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ABSTRACT 

 

Quantitative reasoning primarily involves reasoning about quantitative sets 

that can be represented by number words, Arabic numerals, or an image-based 

mental model. However, most current measures of quantitative reasoning abilities 

rely heavily on number words and Arabic numerals. If test takers represent quantity 

using an image-based mental model, then most measures of quantitative reasoning 

demonstrate construct underrepresentation. This seriously threatens a valid 

interpretation of the assessment in most educational situations. The purpose of this 

study was to examine how kindergarten, first, and second grade students represent 

and reason with quantity.  

Two quantitative reasoning tasks, Equivalence and Number Series, were 

administered to 140 kindergarten through second graders and 9 fifth graders. Both 

tasks were administered with a Numeral condition (Arabic numerals) and a 

Pictorial condition (pictures). Both tasks also had a third condition: students could 

choose to use pictures or Arabic numerals for the Equivalence task (Choice) and 

items were administered with a combination of pictures and Arabic numerals for 

the Number Series task (Mixed). 

On the Number Series task, all students performed better in the Numeral 

condition than the Pictorial and Mixed conditions. However, kindergarteners 

performed better on the Equivalence task when using pictures whereas both first 

and second graders demonstrated similar performance in the Pictorial and Numeral 
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conditions. Kindergarteners preferred using pictures on the Equivalence task 

whereas second graders chose all formats equally. 

Results of this study suggest that kindergarteners perform differently on 

quantitative reasoning tasks that afford a verbal counting structure and 

nonnumerical part-whole structure. Therefore, test developers should critically 

examine the requirements of quantitative reasoning tasks. If the task requires 

students to apply a part-whole schema, then concrete referents should be made 

available to aid early elementary students as they solve the task. On the other hand, 

if the task requires students to apply a verbal counting structure, then Arabic 

numerals or counting words sufficiently match the structure that early elementary 

students use to solve the task. 
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CHAPTER 1 

INTRODUCTION 

 

Quantitative reasoning abilities are one of the most important aptitudes for and 

outcomes of formal schooling (National Association for the Education of Young Children 

[NAEYC] & National Council of Teachers of Mathematics [NCTM], 2002; NCTM, 

2000). Reasoning refers to the process of drawing a conclusion using evidence and 

strategies (Leighton & Sternberg, 2003; Wason & Johnson-Laird, 1972). Therefore, 

quantitative reasoning consists of reasoning in which individuals use mathematical 

relationships and properties to draw conclusions (Carroll, 1993; McGrew, 2005). 

Quantitative reasoning can be distinguished from quantitative knowledge (McGrew, 

2005). Quantitative knowledge includes mathematical concepts and skills, such as 

knowledge of mathematical symbols, operations, and properties, that typically are 

acquired through formal schooling (Carroll, 1993). On the other hand, quantitative 

reasoning consists of making inferences or deductions with well-understood quantitative 

concepts. Therefore, the distinction between quantitative reasoning and quantitative 

knowledge reflects the degree of novelty of the procedures and strategies necessary to 

solve the quantitative task. 

Quantitative reasoning abilities figure prominently in the goals that the NCTM 

(2000) set for educators. One goal for mathematics education emphasizes that students 

should develop number sense by understanding various ways of representing numbers 

and relationships among numbers. Another goal states that all students in pre-

kindergarten through twelfth grade should be able to “apply and adapt a variety of 



2 

appropriate strategies to solve [mathematical] problems” (NCTM, 2000, p. 53). These 

skills are essential to quantitative reasoning because students must have a rich 

understanding of number in order to be able to reason with quantities.  

NAEYC and NCTM (2002) emphasized the importance of reasoning with 

quantities for young children as they endeavor to make sense of their environment. 

Moreover, the NAEYC and NCTM acknowledged that mathematical proficiency 

provides a solid foundation for future success in school because understanding and 

reasoning with quantities are necessary not only for success in mathematics classes, but 

also for learning science, social studies, and for acquiring technological literacy. 

Quantitative reasoning abilities also have strong relationships with important 

educational and occupational outcomes. Quantitative reasoning ability in middle school is 

associated with achievement in high school and college (Benbow, 1992), as well as 

graduate school (Kuncel, Hezlett, & Ones, 2001). Educational achievement, income, and 

adult creative attainment can also be predicted by prior quantitative reasoning abilities 

(Wai, Lubinski, & Benbow, 2005). In addition, quantitative reasoning predicts 

subsequent academic achievement considerably better for non-native English speakers 

than verbal measures of cognitive abilities (Kuncel et al., 2001). The relationship of 

quantitative reasoning with measures of academic success is most likely due to its strong 

relationship with the general intelligence factor (e.g., Keith & Witta, 1997).  

Validation of Measures of Quantitative Reasoning 

Validation of test scores is essential in the development and evaluation of 

cognitive assessments (American Educational Research Association [AERA], American 

Psychological Association [APA], & National Council on Measurement in Education 
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[NCME], 1999). Validation consists of evaluating the plausibility of the proposed 

interpretations of test scores and other outcomes of an assessment (Kane, 2006). A main 

threat to validity is construct underrepresentation (Messick, 1994). Construct 

underrepresentation reflects the extent to which an assessment does not measure 

important aspects of the construct that it was designed to measure (AERA, APA, & 

NCME, 1999). Consequently, the quality of a cognitive assessment depends upon how 

well it requires the fundamental cognitive processes that it was designed to measure. For 

this reason, psychological theory plays a vital role in the validation of cognitive 

assessments. Assessment tasks should require the cognitive functions that are postulated 

by relevant cognitive theory (National Research Council, 2001).  

Measurement experts recognize the central importance of cognitive theory in test 

development (e.g., Embretson & Gorin, 2001; Floyd, 2005; Mislevy, Steinberg, & 

Almond, 2003). Embretson (1983) extended the conception of construct validity beyond 

the relationship of an assessment with other measures to include construct representation. 

According to Embretson, construct representation is achieved by aligning the demands of 

an assessment to the psychological processes, strategies, and knowledge that influence 

performance. Likewise, Messick (1994) argued that cognitive theory should guide the 

development of tasks on cognitive assessments. Understanding how test takers complete 

test tasks is therefore a crucial aspect of developing and evaluating cognitive 

assessments. 

Many different procedures may be used to gather information on how examinees 

solve test tasks. Understanding how examinees comprehend the problem provides one 

avenue. Cognitive theory has suggested that the manner in which a student mentally 
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represents a problem may be more important for forecasting whether it will be solved 

than the complexity of the procedure necessary to complete the problem (Griffin, Case, & 

Sandieson, 1992). The label mental model refers to these representations of a situation 

maintained in an active state in working memory when solving a problem (Halford, 

1993). Mental models assist an individual in understanding a problem, choosing a 

strategy for solving it, and managing the implementation of that strategy (Johnson-Laird, 

1983; Norman, 1983). Since mental models drive performance on a task, test developers 

should understand the mental models that test takers typically use when attempting 

problems on the assessment. If an assessment task does not evoke the mental model that 

test takers commonly construct when solving problems in that particular domain, then the 

assessment may suffer from construct underrepresentation. 

The degree to which test scores are influenced by processes that are extraneous to 

the intended construct, termed construct-irrelevant variance, also threatens a valid 

interpretation of test scores (AERA, APA, & NCME, 1999). If an assessment becomes 

more difficult for a particular group of examinees because of the influence of a variable 

that is unrelated to the construct of interest, then the assessment suffers from construct-

irrelevant difficulty (Messick, 1995). The influence of verbal abilities on an assessment 

of an unrelated cognitive process is a pervasive source of construct-irrelevant variance 

(Haladyna & Downing, 2004). For example, a test that measures quantitative reasoning 

abilities should not be unduly affected by verbal demands such as knowledge of verbal 

labels for quantities or reading and comprehending a quantitative scenario.  

In conclusion, measures of quantitative reasoning should demonstrate both 

adequate construct representation and a lack of construct-irrelevant variance. Acceptable 
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construct representation would require an assessment of quantitative reasoning abilities to 

evoke mental representations and processes that would be classified as quantitative 

reasoning. Furthermore, these assessments must not involve irrelevant process, such as an 

advanced knowledge of mathematical symbols and operations or comprehension of a 

verbally stated quantitative problem. 

Measures of Quantitative Reasoning 

Current measures of quantitative reasoning tend to assess quantitative reasoning 

abilities using tasks that require knowledge of Arabic numerals or comprehension of a 

verbally presented problem. Individually administered measures of cognitive abilities 

with quantitative reasoning subtests include the Stanford-Binet Fifth Edition (SB-5), 

Wechsler Intelligence Scale for Children-IV (WISC-IV), and Woodcock-Johnson III Tests 

of Achievement (WJ-III ACH). Group administered measures of cognitive abilities with 

measures of quantitative reasoning include the Cognitive Abilities Test, Form 6 (CogAT 

6), Inview, and Otis-Lennon School Ability Test, Eighth Edition (OLSAT-8). 

The SB-5 (Roid, 2003) uses both verbal and nonverbal content to measure 

quantitative reasoning, one of five broad cognitive ability factors. The Quantitative 

Reasoning subtest in the nonverbal domain consists of items that depict quantity using 

figures such as stars or blocks and require students to manipulate the quantities or find 

patterns. At the lower levels, the Quantitative Reasoning subtest in the verbal domain 

requires test takers to count objects, recognize Arabic numerals, and perform simple 

calculations. At the higher levels, the verbal subtest contains story problems that are 

simultaneously presented in written form and read aloud to the test taker. 
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The WISC-IV (Wechsler, 2003) measures general intelligence with four index 

scores that assess children ages 6 years through 16 years and 11 months. Only one subtest 

on the WISC-IV, Arithmetic, contains quantitative content. The Arithmetic subtest is a 

supplemental measure for the Working Memory index score. This subtest requires test 

takers to solve arithmetic problems within a given time limit that are read aloud by the 

test administrator. Items on the Arithmetic subtest involve counting pictures at the lowest 

levels and solving story problems at the higher levels.  

The WJ-III ACH (Woodcock, McGrew, & Mather, 2001) has two tests that 

measure quantitative reasoning abilities. The Standard Battery contains Applied Problems 

that requires test takers to analyze and solve quantitative tasks. At the lowest levels, the 

items require counting objects. Slightly more difficult items contain pictures to represent 

a quantitative problem that is read aloud to test takers. The more advanced items contain 

written story problems that are also read aloud and to the test taker. The Extended Battery 

contains a Quantitative Concepts measure with two subtests. The Number Series subtest 

contains series of Arabic numerals even for early elementary students. The Concepts 

subtest measures knowledge of mathematical concepts, symbols, and vocabulary. The 

easiest items on this subtest require counting and recognizing Arabic numerals. 

The CogAT 6 Primary Battery (for kindergarten through second grade; Lohman 

& Hagen, 2001) includes two subtests that measure quantitative reasoning abilities, 

Relational Concepts and Quantitative Concepts. Relational Concepts assesses the ability 

to discover relationships through questions that are read aloud to the test taker, such as 

determining which object is longer. The Quantitative Concepts subtest requires students 

to solve simple verbal story problems. In the Multilevel Battery (for third through twelfth 
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grade), the quantitative reasoning subtests are Number Series (determining a pattern in a 

series of numbers and continuing the pattern with the next number), Equation Building 

(ordering sets of numbers and mathematical operations to make a meaningful number 

sentence), and Quantitative Relations (comparing two quantities that occasionally 

requires reading text). 

The Inview (CTB/McGraw-Hill, 2001) assesses cognitive abilities in students 

from second through twelfth grade. One subtest on the Inview, Quantitative Reasoning, 

measures the ability to think with numbers and to solve quantitative problems through 

identifying patterns, inferring relationships among quantities, and drawing conclusions 

from quantitative data. The Quantitative Reasoning subtest includes different item 

formats at every level of the assessment. In Level 1 for second and third grade, the Grid 

Comparison item format requires test takers to determine which grid has the most black 

shading, the Number Operations Puzzle requires test takers to combine two of three 

numbers to make an accurate number sentence, and the Algebraic Substitution-Equations 

format requires test takers to substitute the correct number into an algebraic equation. 

Other levels of the test include item formats that consist of number analogies, 

determining equality between sets of numbers, and manipulating a quantity according to 

a flow chart. While the Inview does have some item formats that do not contain number 

words or Arabic numerals, there is no assessment for kindergarten or first grade students. 

The OLSAT-8 (Otis & Lennon, 2003) has three measures of quantitative 

reasoning included in the Nonverbal Cluster of subtests: Number Series (a format 

identical to the CogAT 6), Numerical Inference (analyzing how two numbers are related 

and applying the same rule to another set of numbers), and Number Matrix (determining 
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the missing number in a number matrix). However, these subtests only begin at Level E 

for fourth grade students. No subtest assesses quantitative reasoning for kindergarten 

through third grade students in the Nonverbal cluster. In the Verbal Cluster for all levels 

of the test, Arithmetic Reasoning was designed for test takers to solve verbal problems 

that rely on numerical reasoning. In the Arithmetic Reasoning test for kindergarten 

through second grade, problems are read aloud for test takers to solve. For these items, 

pictures depict the problem, but test takers must comprehend the verbal statement of the 

problem in order to understand the meaning of the pictures. Arithmetic Reasoning items 

for third grade and higher contain written story problems.  

Most of these measures of quantitative reasoning assume that test takers can use 

number words and Arabic numerals to represent quantitative tasks. This assumption 

seems questionable since early elementary students have had limited exposure to the 

symbol system of mathematics. Quantitative reasoning largely consists of reasoning 

about quantities (Griffin, 2003). Indeed, Griffin defined mathematics as “a set of 

conceptual relations between quantities and numerical symbols” (2003, p. 8). 

Accordingly, quantity can be represented orally with number words, in writing with 

Arabic numerals, or mentally by replicating the objects in a set. In time, the concrete 

spatial representations can become increasingly abstract (e.g., a number line). Griffin 

hypothesized that competence in quantitative reasoning involves creating sophisticated 

relationships between these three systems. This hypothesis is similar to Halford’s (1993) 

suggestion that reasoning ability may consist of the ability to map one representational 

system onto another. The reliance of most current measures of quantitative reasoning on 

number words and Arabic numerals therefore neglects the mental representation of 
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quantity through images of concrete objects. If test takers tend to use a verbal 

representation of quantity with number words and written Arabic numerals, then these 

measures of quantitative reasoning demonstrate adequate construct representation. 

However, if early elementary students also use a mental-image based (or nonnumerical) 

representation of quantity, then these measures may exhibit construct 

underrepresentation. Furthermore, many measures of quantitative reasoning require test 

takers to understand a verbally presented quantitative problem that potentially introduces 

construct-irrelevant variance.  

If students mainly rely on number words and Arabic numerals when solving 

quantitative tasks, then they should use verbal working memory resources since mental 

models guide the processes that are used to solve tasks (Johnson-Laird, 1983; Norman, 

1983). However, previous research has established that students in kindergarten through 

second grade tend to place greater demands on spatial resources in working memory 

when solving arithmetic items, whereas older elementary students tend to use both spatial 

and verbal resources (Holmes & Adams, 2006; McKenzie, Bull, & Gray, 2003). 

Therefore, early elementary students do not appear to rely on verbal processes when 

engaged in quantitative tasks, whereas older elementary students who have more 

experience with the verbal representation of number rely on both verbal and spatial 

processes.  

Young students also tend to use overt strategies for solving difficult calculation 

items, such as counting their fingers to interpret the quantities necessary to solve a 

calculation task (Siegler & Shrager, 1984). Counting fingers to solve a mathematical task 
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is similar to mentally replicating the objects in a set because, in both cases, the student 

relies on a concrete representation of the quantities to solve the problem.  

Using verbal representations of quantity on quantitative tasks (number words and 

Arabic numerals) requires two fundamental concepts. First, students must understand that 

a set of objects can be described with a unique label, such as three, that represents the 

quantity of that set. This is called the cardinality principle (Gelman & Gallistel, 1978). 

Second, students must then use the label while reasoning about the set of objects. 

However, most early elementary students have not developed the strategy of verbally 

labeling an object (e.g., a ball) when attempting to remember it (Palmer, 2000). Until 

about the age of seven, children appear to simply visualize an object when instructed to 

remember it. If these students have not developed the strategy of verbally labeling an 

object to facilitate recall, then they may not have developed the strategy of verbally 

labeling a set of objects with the numerical name in order to facilitate reasoning about the 

set. As a result, young children would have to rely on a mental replication of the objects 

in the set to solve quantitative reasoning tasks. 

Problem Statement 

To summarize, children’s quantitative reasoning primarily involves reasoning 

about quantities that can be represented by number words, Arabic numerals, or image-

based mental models. However, most current measures of quantitative reasoning abilities 

rely heavily or exclusively on number words and Arabic numerals. If test takers represent 

quantity using image-based mental models, then most measures of quantitative reasoning 

demonstrate construct underrepresentation. This seriously threatens a valid interpretation 

of test scores in most educational situations. Likewise, the verbal demands of these 
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assessments may introduce construct-irrelevant variance. Therefore, the purpose of this 

study was to examine how students represent and reason with quantity. This study 

specifically focused on quantitative reasoning in kindergarten, first, and second grade 

students because they are least likely to have developed a robust understanding of 

number words and Arabic numerals. In order to compare early elementary students’ 

quantitative representations to more advanced representations, a smaller comparison 

sample of fifth grade students was also examined.  
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 

Developmental Theory of Central Conceptual Structures 

Case, in his neo-Piagetian theory of conceptual development, essentially 

theorized that children progress through qualitatively distinct stages of reasoning in 

which thinking becomes more systematic (Case, 1978). A distinct central conceptual 

structure characterizes each stage. Central conceptual structure refers to an internal 

mental network of concepts used to represent and assign meaning to situations and 

problems (Case & Griffin, 1990). As their conceptual structures mature, children become 

more effective problem solvers because their conceptual structures enable them to 

integrate more aspects of the problem. Two key propositions of Case’s theory are that 

central conceptual structures (a) affect a broad range of problems within a particular 

domain and (b) provide the foundation on which more complex concepts are built 

(Griffin, 2004).  

 Therefore, children at different levels of development mentally represent the 

conditions of the same problem in fundamentally different ways. The mental 

representation of a problem then dictates the strategies that the child will use to find a 

solution. As a result, the central conceptual structure is fundamental to Case’s theory 

because developed central conceptual structures limit children’s cognition. Although 

Case’s theory of cognitive development has been empirically supported in studies on 

social thought, narrative, and quantitative reasoning (Case & Okamoto, 1996) the focus 

here was on quantitative reasoning.  
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According to Case’s theory, children from preschool through elementary school 

are generally in one of four levels of the dimensional stage. In the predimensional level 

beginning around four years of age, children have two functionally independent 

conceptions of quantity: the ability to count and the ability to make nonnumerical 

judgments of quantity (Case & Okamoto, 1996).  

Most children have learned to count small sets of objects by the age of three 

(Fuson, 1988; Gelman & Gallistel, 1978; Siegler & Robinson, 1982). The ability to count 

requires three fundamental capabilities (Gelman & Meck, 1983). First, the one-to-one 

principle stipulates that each object should be tagged with only one verbal label. Second, 

successful counting involves recognizing that the tags used to label the objects must be 

stated in a constant order. This is called the stable order principle. Finally, the cardinality 

principle requires understanding that the final tag in the series is the formal name for the 

numerosity of the set of objects. Children tend to apply the one-to-one and stable order 

principles around two and one-half years of age (Gelman, 1978). However, the ability to 

apply the cardinality principle develops later and involves four stages of development. 

First, when asked how many objects are in a set, children simply repeat the last number in 

the counting sequence. Later, children understand that they will end at the same cardinal 

number across repeated counts. Next, children can determine the cardinality of a set 

without counting by matching the set with another set of known cardinality via one-to-

one correspondence. Finally, children develop the ability to reason using a number word 

without having to count a concrete set of objects.  

In addition to a verbal conception of quantity, preschoolers also have a variety of 

nonnumerical quantitative abilities. Most preschoolers understand that adding an object 
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to a set causes the amount of the set to increase, and vice versa for subtraction (Starkey, 

1992). Preschoolers can also compare sets of objects to determine which set has more and 

which set has less (Barth, La Mont, Lipton, & Spelke, 2005; Huntley-Fenner & Cannon, 

2000; Siegel, 1974). When preschoolers compare sets and make mathematical 

transformations, they do not appear to use their counting abilities to solve the task 

(Huntley-Fenner & Cannon, 2000; Starkey, 1992). 

Even though preschoolers successfully solve quantitative tasks that require either 

the exclusive use of verbal counting or nonnumerical quantitative skills, they appear 

incapable of solving tasks that require both of these abilities at the same time (Resnick, 

1989; Siegler & Robinson, 1982). For example, preschoolers have difficulty answering 

the question “Which is bigger, 9 or 5?” These results demonstrate that preschoolers have 

developed separate quantitative central conceptual structures. One of these structures 

consists of representing a problem in terms of a verbal counting representation and the 

other consists of representing a problem in terms of a nonnumerical quantitative 

representation (Case & Okamoto, 1996). A study by Wang, Resnick, and Boozer (1971) 

supports this interpretation. Wang et al. (1971) administered a broad range of tasks to 78 

kindergarteners that assessed the ability to count, use numerals, and compare set sizes. 

They found that the ability to count and use numerals were dependent on each other, but 

the ability to compare set sizes developed independently from counting and using 

numerals. 

As preschoolers transition into the next stage of development, they merge their 

verbal counting structure and their nonnumerical structures into a new conceptual 

structure of a mental number line with four different components (see Figure 1; Case &  
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Figure 1. The central numerical structure (the mental number line) hypothesized to 
emerge around 6 years. The four rows indicate, respectively, (a) knowledge of written 
numerals, (b) knowledge of number words, (c) a pointing routine for tagging objects 
while counting, and (d) knowledge of cardinal set values. The vertical arrows indicate the 
knowledge that each row maps conceptually onto the next; the horizontal arrows indicate 
an understanding of the relation between adjacent items. The external brackets indicate 
the knowledge that the entire structure can be used as a vehicle for determining the 
relative amount of quantities composed of identical units (weight, height, length, etc.). 
 
Source: Case & Okamoto (1996, p. 7).  
 

 

Okamoto, 1996). The verbal labeling line (row b in Figure 1) consists of the ability to 

recognize and generate verbal labels for quantity (e.g., one, two, three). The mental 

action line (row c in Figure 1) indicates that children can procedurally tag objects as they 

state the number words using the one-to-one principle. Children progress from only 

tagging physical objects to tagging objects that are mentally represented (Case & 

Okamoto, 1996). The conceptual interpretation line (row d in Figure 1) signifies that 

each verbal tag represents a set that contains that specific quantity of objects. Finally, 

children recognize Arabic numerals (row a in Figure 1) that are grafted onto the three 

more basic number lines.  
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In addition to the four mental number lines, children must also understand 

associations between them (Case & Okamoto, 1996). First, they must recognize that each 

mental number line maps directly onto the other number lines in a one-to-one fashion. 

Secondly, children must understand that moving from one place on a number line to the 

next involves addition or subtraction of one unit. Finally, children need to know that 

movement along one mental number line is necessarily accompanied by the same 

movement along the other mental number lines.  

At the age of six, the unidimensional level, children’s conceptual structure of 

quantity consists of mental objects that are mentally manipulated (Okamoto, 1996). In 

this stage, children can represent a situation using only one mental number line. By age 

eight, the bidimensional level, children have mastered the use of the mental number line 

and so they can begin relating two number lines to each other (Case & Okamoto, 1996). 

Because of this ability to use multiple number lines, children are able to go beyond 

thinking about mental objects and can reason using numbers as symbols for quantitative 

sets (Okamoto, 1996). At ten years of age, the integrated bidimensional level, children 

are capable of explicitly relating two mental number lines and generalizing the 

relationship to an entire number system (Case & Okamoto, 1996). 

To summarize, in the predimensional level, children possess two separate 

quantitative structures that allow them to interpret problems in terms of a counting 

representation or a nonnumerical representation. These two systems then merge and 

children begin to construct a system of symbolic relations that allow them to map a set of 

real objects to number words and Arabic numerals via the mental number line. At this 

level, children interpret quantitative tasks using a single array of mental objects. From 
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ages six through ten, children attain complete mastery of the mental number line, 

allowing them to coordinate multiple number lines. 

Empirical evidence to support central conceptual structures. Support for the 

theory of central conceptual structures has come from research in which a group of 

children completed a range of tasks that assessed each level of conceptual development. 

Analyses test whether performance on the tasks followed the hypothesized pattern of 

conceptual structures (Case & Okamoto, 1996). The theory of central conceptual 

structures was confirmed if participants succeeded on both tasks that defined a particular 

conceptual structure and the tasks at lower conceptual structures, but failed at tasks that 

defined higher conceptual structures.  

Tasks that assessed the first quantitative conceptual structure did not require 

precise quantification skills, but instead could be answered by general polar 

classifications such as evaluations of more or less. Only one dimension of the task had to 

be accurately quantified on tasks that assessed the second conceptual structure. The third 

conceptual structure was assessed by two dimensions that had to be quantified precisely 

but did not need to be precisely related, and the fourth conceptual structure was assessed 

by precisely quantifying and relating two dimensions.  

 Following this paradigm, Okamoto (1996) conducted a study to determine 

whether conceptual structures adequately described children’s performance on 

quantitative word problems. Previous research has established that quantitative word 

problems vary in difficulty even when the basic mathematical operations were the same 

(Arendasy & Sommer, 2005; Carpenter & Moser, 1984; Hudson, 1983; Riley & Greeno, 

1988). Because of the differences in difficulty, the linguistic structure of a word problem 
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has been hypothesized to afford a specific mental representation. The mental 

representation in turn required more or less advanced quantitative knowledge for 

successfully solving the problem (Kintsch, 1988). In other words, the description of the 

quantitative scenario in the word problem elicited a particular representation of the 

problem. Performance on the problem then depended on whether the child’s conceptual 

structure could accommodate the quantitative representation that the linguistic structure 

afforded (Okamoto, 1996). 

 Since six year old children were hypothesized to have a conceptual structure that 

consisted of a single mental line of objects, they would only be able to solve word 

problems that afforded a representation using one dimension of mental objects. For 

example, “Joe had six marbles. Then he gave Tom two marbles. How many marbles does 

Joe have now?” On this item, children could mentally represent an array of six marbles, 

then remove two marbles and count the number of marbles left.  

Eight year olds were hypothesized to have a conceptual structure that enabled 

them to compare two mental number lines using numbers to symbolize mental objects. At 

this level, children should be able to solve the problem “Joe has two marbles. Tom has 

six marbles. How many more marbles does Tom have than Joe?” At this stage, students 

could create one number line to represent Joe’s two marbles and a separate number line 

that represented Tom’s six marbles. Comparison of the two number lines would allow the 

student to determine that four numbers come between two and six.  

Ten year olds were hypothesized to have a conceptual structure that could use two 

mental number lines that are well integrated. These children could therefore reverse 

operations that eight year olds could perform. Ten year olds could successfully solve 
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problems such as “Joe has six marbles. Joe has two more marbles than Tom. How many 

marbles does Tom have?” In order to determine how many marbles Tom has, the phrase 

“Joe has two more marbles than Tom” must be reversed to “Tom has two fewer marbles 

than Joe.” A student could then calculate 2 fewer than 6. Therefore, with the 

sophisticated dimensional conceptual structure, children could create a mental number 

line for Joe’s six marbles. A second mental number line represented the phrase two more. 

This must be reversed to represent “two fewer.” By comparing the first mental number 

line and a reverse of the second mental number line, the student could arrive at the 

solution. 

 To conduct the study, Okamoto administered sixteen word problems representing 

three levels of conceptual structures to children in kindergarten through fourth grade. The 

experimenter read aloud the items and presented a representation of the items on a card. 

In kindergarten through second grade, the cards contained pictures that represented the 

word problems while the text was printed on cards for grades three and four. 

 As expected, the proportions of correct responses for all items within a particular 

level of conceptual structure were very similar. Between levels of conceptual structures, 

however, there was a significant decrease in proportion correct. The mean proportion of 

correct responses for the three level 1 items was .906 (range from .867 to .950), the mean 

of the nine level 2 items was .600 (range from .467 to .683), and the mean of the four 

level 3 items was .267 (range from .233 to .300). Cluster analysis and latent structure 

analysis also generally confirmed that the word problems that were hypothesized to 

measure each conceptual structure did in fact cluster together to represent separate 

structures. Examination of individual children’s correct and incorrect responses revealed 
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that all sixty children in the sample conformed to the hypothesized pattern of responses 

whereby level 1 knowledge was prerequisite to level 2 knowledge that was then 

prerequisite for level 3 knowledge. 

 Case and Okamoto (1996) also conducted a similar study with additional items 

that were hypothesized to measure four levels of quantitative conceptual structures, 

including the predimensional structure represented by two separate counting and 

nonnumerical structures. Level 1, predimensional thought, assessed the conceptual 

structure that precedes the mental number line, such as “Which of these two piles of chips 

has more?” Level 2, unidimensional thought, was measured by items that tested for the 

presence of the mental number line, such as “What number comes after seven?” At level 

3, bidimensional thought, children were hypothesized to be capable of integrating two 

mental number lines. This could be reflected by understanding the relations between the 

ones and tens column of a base-ten number system because the ones and tens column are 

essentially separate number lines. A sample item at level 3 was “What number comes 5 

numbers after 49?” Level 4, integrated bidimensional thought, could be reflected by 

understanding the relationship between multiple columns in the base-ten system. This 

level was measured by items such as “What number comes 10 numbers after 99?”  

Kindergarten through fourth grade children completed a battery of similar items. 

Results supported the presence of the different conceptual structures because the 

proportions of correct responses were comparable within level, but decreased as the 

levels increased. Similar studies have also been conducted with items that reflect the 

various levels of conceptual structures in the domains of time and handling money (e.g., 

Griffin et al., 1992). 
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 A different experimental paradigm to test the theory of central conceptual 

structures consisted of giving the same task to children at a range of ages. Experimenters 

then coded children’s answers and justifications based on the characteristics of the 

problem that they took into account when solving the task (Marini, 1992). For example, 

students were asked to predict which side of a balance beam would go down when 

different numbers of weights were placed in different locations along the beam. Reponses 

to the task were coded based on whether they only focused on global aspects of the task 

(predimensional), one dimension (unidimensional), two dimensions (bidimensional), or 

two dimensions and the variation in each (integrated bidimensional). Additional tasks 

from this paradigm have consisted of a conceptually similar task where students made 

predictions of shadow projections, as well as three different proportional reasoning tasks 

such as determining which mixture of juice would be more concentrated when various 

amounts of juice and water were combined (Marini, 1992; Marini & Case, 1994). The 

results of these studies demonstrated that children within age a particular age group 

tended to focus on similar characteristics of the problem, while children across age 

groups tended to take into account more conditions of the problem. Each child also 

produced similar responses across tasks. 

These studies by Case, Okamoto, and colleagues showed that quantitative tasks 

afforded different problem representations based on the characteristics of the task that 

children used to solve the problem. Children were successful on tasks with demands that 

could be represented by their conceptual structures. However, children were unsuccessful 

on the tasks where the complexity exceeded the capacity of their conceptual structures. 
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Furthermore, less advanced conceptual structures were prerequisite to more sophisticated 

conceptual structures.  

Central conceptual structures were additionally hypothesized to affect children’s 

interpretation of diverse problems within the domain. To test this hypothesis, children’s 

conceptual structures were experimentally manipulated by training children in the next 

advanced conceptual structure. If conceptual structures did indeed influence a wide range 

of tasks, then instruction in a more complex conceptual structure would transfer to 

unrelated tasks within the domain.  

 To test this hypothesis, Case and Sandieson (1992) assigned junior kindergarten 

students (the first of two years of kindergarten; mean age of 4.9 years) in Canada to either 

a treatment group that received instruction in the mental number line, which was not 

hypothesized to develop until six years of age, or to a control group that received 

instruction in the letters of the alphabet. The treatment consisted of instruction on reciting 

the number sequence, counting objects, adding and subtracting one unit from a set, 

deciding the larger of two numbers, and using numbers to compare sets of objects. Both 

the treatment and control groups were pre- and post-tested on tasks that required near 

transfer (comparing amounts of money), intermediate transfer (solving a basic 

proportional reasoning task), and remote transfer (comparing amounts of money that 

were misleading such as quarters and dimes, analyzing the passage of time on a clock, 

and determining the amount of blocks after a large amount of blocks had been added to a 

set).  

Results showed that at the pretest, most of the children in both groups failed all of 

the transfer tasks. After training, children in the control group still failed the transfer 
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tasks. However, most of the children who had mastered the training activities in the 

treatment condition were successful on all of the transfer tasks. Since instructional 

training in the next level of conceptual structure influenced performance on tasks that 

were only distally related to the instruction, Case and Sandieson (1992) concluded that a 

quantitative central conceptual structure did indeed influence a wide variety of problems 

within the domain.  

Additional training studies were conducted with low and middle socioeconomic 

status students in kindergarten (Griffin, Case, & Siegler, 1994). In these studies, the 

treatment and control groups were matched on number knowledge and cultural 

background. Griffin and colleagues found results similar to those of Case and Sandieson 

(1992) on measures of transfer. In addition, both the treatment and control groups were 

assessed on quantitative tasks one year later in first grade. The treatment group 

outperformed the matched control group on measures of oral arithmetic, written 

arithmetic, and word problems. 

 In conclusion, Case and his colleagues provided evidence that children interpreted 

tasks in a wide range of quantitative situations according to central conceptual structures 

that helped children organize their thought about a problem. As children developed, their 

central conceptual structures became fundamentally altered, producing qualitatively 

different conceptual structures that could represent more complex problems.  

Descriptive Theory of Mental Models 

Huttenlocher and colleagues developed a mental model theory of quantitative 

reasoning to describe preschoolers’ performance on quantitative tasks. According to 

Huttenlocher and colleagues, children construct a mental representation of the features of 
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a situation that are critical for quantitative reasoning (Mix, Huttenlocher, & Levine, 

2002). In this process, a mental image of the quantitative task is created by imagining 

each discrete entity and then visualizing any quantitative transformation that may be 

completed on the set, such as adding or removing objects (Mix et al., 2002). These 

mental models are inherently symbolic because the abstract mental images represent 

physical objects and exclude information irrelevant to the quantitative task. 

Consequently, mental models are hypothesized to develop in early childhood during the 

same time that other symbolic activities develop, such as language and pretend play 

(Huttenlocher, Jordan, & Levine, 1994).  

Three steps are necessary when using a mental model to perform basic calculation 

transformations (Mix et al., 2002). First, a mental-image of each unit in a set must be 

created. To transform the set, the child must recall the image of the original set, the 

amount by which the set must be transformed, and the direction of the transformation. 

The transformation is executed by imagining mental units either being added to or taken 

away from the original set (Huttenlocher et al., 1994). Lastly, working memory maintains 

the image of the final set while the solution is communicated.  

 The use of mental models of objects to solve quantitative tasks has obvious 

limitations. First, memory capacity limits reasoning because each image has to be held in 

mind at the same, so mental models are only useful for small set sizes. The large number 

of steps necessary to reason using a mental model also affords many opportunities for 

error, such as misrepresenting the initial set, completing an inaccurate transformation, 

and incorrectly communicating the final quantity when an answer is required. 
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These potential sources of error can be reduced by using number words or Arabic 

numerals as a substitute for the mental image of a quantitative set. Verbal representations 

of quantity can reduce memory burdens during quantitative transformations so the entire 

problem does not have to be reconstructed in memory (Mix et al., 2002). Using either 

number words or Arabic numerals also greatly increases the quantitative operations that 

can be performed, both by expanding the range of numbers that can transformed and by 

allowing for more complex mathematical functions such as algebra and statistical 

analysis. 

Mix et al. (2002) proposed that mental models of objects act as the bridge that 

unites nonnumerical quantitative reasoning skills to the conventional symbol system of 

mathematics that utilizes number words, Arabic numerals, and other symbols for 

mathematical operations. Accordingly, mental-images of quantity may be used as 

conceptual referents for number words and other mathematical symbols. As children 

become more proficient relating verbal number words to the associated mental images, 

they gradually depend more on the verbal number words while reasoning than the mental 

images. 

Empirical evidence to support mental models. Support for Huttenlocher and 

colleagues’ mental model theory of quantitative reasoning has come from studies 

comparing the difficulty of quantitative tasks that are presented using different stimuli. 

Levine, Jordan, and Huttenlocher (1992) examined quantitative reasoning in children 

ages four to six years. The older children were kindergarteners who had some formal 

instruction in calculation, whereas the younger children were preschoolers and had no 
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formal arithmetic instruction. The students completed three tasks, a nonverbal 

quantitative task, verbal story problems, and traditional number-fact problems.  

In the nonverbal condition, the experimenter displayed a set of chips in full view 

of the child. These chips were subsequently hidden by a box. Next, the experimenter 

placed an additional set of chips one-by-one into the box. To solve the task, the child 

used their own set of chips to display the final set of chips hidden by the box. The two 

verbal conditions had equivalent mathematical requirements but without concrete objects 

as in the nonverbal condition. The story problems consisted of items such as “Mike had 

one ball. He got two more. How many balls did he have altogether?” Number-fact items 

simply stated “How much is one and two?” The experimenter read aloud both story 

problems and number-facts problems and children responded with the correct number 

word. None of the items included numerosities greater than six.  

Since the chips afforded envisioning the quantitative transformation, the 

nonverbal quantitative task was hypothesized to be the easiest if children represented 

quantity using a mental-image representation. The number-fact problems, on the other 

hand, were hypothesized to be easiest if children used a verbal representation of quantity 

because the number words did not afford visualizing the quantity that the number words 

represent. Although the story problems used number words, the addition of a concrete 

referent (balls) was hypothesized to potentially afford picturing the number of balls.  

An analysis of variance (ANOVA) showed a significant main effect of problem 

type. Tukey HSD follow-up tests confirmed that nonverbal items were significantly 

easier than story problems, and story problems were easier than number-fact problems. 

These results demonstrated that young children performed better on a task that afforded 



27 

using a mental-image representation of quantity. However, the standard errors for all 

three conditions in the 6.0 to 6.5 age group appeared to overlap in the plots of the mean 

scores, particularly for the addition items. Since the authors did not report whether they 

tested the task by age interaction, it is not certain whether the three conditions were 

significantly different for the oldest age group. This issue was particularly important 

since children in the two oldest age groups had formal instruction in arithmetic that most 

likely consisted of instruction in number facts.  

The authors did report a significant interaction between problem type and 

numerosities. For the nonverbal task and story problems, items with numerosities of five 

or six were significantly more difficult than items with smaller numbers. However, there 

was no significant difference between small and large numbers on number-fact problems. 

Therefore, numerosity did not appear to affect performance if the task used a verbal 

representation. On the other hand, the size of the set did affect performance if the task 

afforded a mental-image representation where reasoning would be limited by the amount 

of objects that children could hold in memory at one time. 

The study additional found that the older children used their fingers as a strategy 

most frequently for number-fact problems, with an intermediate frequency for story 

problems, and least frequently on the nonverbal task. These students were most likely 

attempting to relate the verbal demands of the task to the mental image strategy by using 

their fingers as physical objects on the tasks that did not provide concrete referents. In 

other words, the older children might have still needed to visualize the amount of each 

quantity in order to complete the task, but since the task did not afford mentally 

imagining objects, the children used their fingers instead. 
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Hughes (1981) also found similar results using a wider range of tasks in a sample 

of three to five year olds. In his study, children completed five quantitative tasks that 

varied on a continuum from concrete to abstract. In the most concrete task, box open, 

children viewed an open box in which bricks were either added or subtracted from the 

original set. Children could see the final set while answering. In the box closed condition, 

the children saw the original set but the box was closed before the experimenter 

performed the transformation, a condition similar to the nonverbal task used by Levine et 

al. (1992). In the hypothetical box condition, the experimenter read aloud items such as 

“If there was one brick in a box and two more were put in, how many would there be 

altogether?” The hypothetical shop condition was similar to the hypothetical box 

condition, but items stated “If there was one child in a sweetshop and two more went in, 

how many were in the sweetshop altogether?” Finally, the formal code condition 

consisted of items like Levine et al.’s (1992) number-fact problems, such as “What does 

one and two make?” Children answered all tasks with the number word for the final set. 

An ANOVA found a main effect for the task, with abstract tasks significantly 

more difficult than concrete tasks. A significant interaction between task and set size was 

also reported. Tukey HSD follow-up tests confirmed that with small numbers less than 

five, the open and closed box tasks were not significantly different from each other and 

the two hypothetical tasks (box and shop) were not significantly different from each 

other. Therefore, the open and closed box tasks were easiest, the hypothetical box and 

shop tasks were of medium difficulty, and the formal code task was the most difficult. 

Since young children performed equally well on a task that required memory recall of the 

final set (box closed) and one that did not require memory recall (box open), memory did 
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not appear to inhibit young children’s performance on concrete items that included sets of 

five or less. With large numbers, however, the open and closed box tasks were 

significantly different from each other. Furthermore, performance in the closed box, 

hypothetical box, and hypothetical shop tasks was not significantly different. In other 

words, the open box task was the easiest; the closed box, hypothetical box, and 

hypothetical shop tasks were of medium difficulty; and the formal code task was the most 

difficult. Since the boxed-closed task was equally as difficult as the hypothetical tasks for 

large numbers, memory did appear to inhibit performance on concrete quantitative tasks 

with numbers greater than five for preschool children. 

Using a different research paradigm, Starkey (1992) found evidence that young 

children could solve quantitative tasks without using verbal counting skills. In this 

experiment, children ages two through four saw a set amount of table tennis balls. Then 

the children placed each ball one at a time into a searchbox that hid the ball from view. 

Once the child had placed the last ball into the searchbox, the child watched the 

experimenter either add or remove balls from the searchbox. The experimenter then 

instructed child to take all of balls out of the searchbox. To prevent the child from feeling 

how many balls were left in the box, a hidden apparatus removed balls so only one ball 

was present in the searchbox at a time. Starkey found that children even as young as two 

years old could remove the exact amount of balls from the searchbox on problems that 

involved numerosities of three or less. However, performance on items that involved 

numerosities four or greater was not significantly better than chance even for four year 

olds. 
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Starkey asserted that these children did not solve the task using verbal counting 

procedures. First, the children rarely demonstrated overt counting procedures or 

nonverbal motor behaviors that preschool children tend to use when verbally counting. 

Moreover, even children who were unable to count, as evidenced both by parental report 

and performance on a counting task in the experiment, were successful in the searchbox 

task. Starkey therefore concluded that some early numerical reasoning abilities do not 

depend on the ability to count. Similar to Huttenlocher and colleagues, Starkey suggested 

that the children may have used mental imagery in order to create a numerically accurate 

representation of the original set with objects subsequently added or removed. However, 

Starkey cautioned that the mental imagery process would only be effective for small set 

sizes. 

Using a paradigm similar to Levine et al. (1992), Jordan, Huttenlocher, and 

Levine (1994) examined the difficulty of calculation tasks for three to five year olds 

when children responded nonverbally, verbally, or simply recognized a nonverbal 

solution. The nonverbal condition was identical to the nonverbal task used by Levine et 

al. (1992) where children produced the number of chips hidden in a box after a 

transformation. The verbal condition used the same procedures as the nonverbal 

condition, but children responded with the appropriate number word after the 

transformation. In the nonverbal recognition condition, children chose the correct answer 

from among four options presented on an index card. In a sample of middle-income 

children, who tend to be more skilled in language, there were no differences in 

performance among the three response conditions. Jordan et al. (1994) concluded that 
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young middle-income children could answer nonverbal calculation problems both 

verbally and nonverbally. 

Jordan et al. (1994) extended their study to a sample of lower-income children 

who attended a Headstart program. Previous research indicated that lower-income 

students tend to perform more poorly than middle-income children on quantitative tasks 

that use verbal representations of quantity. If young children solved nonverbal 

quantitative tasks using a verbal strategy, then the sample of lower-income children 

would perform worse than middle-income children on all three conditions in the study. 

However, if young children solved nonverbal calculation tasks using an image-based 

mental model strategy, then the lower-income children would perform just as well as 

their middle-class peers in the nonverbal and nonverbal recognition conditions. In the 

lower-class sample, there was a main effect of response type whereby the verbal task was 

more difficult than both the nonverbal production and recognition task. Furthermore, the 

lower-income children performed as well as the middle-income children in the two 

nonverbal conditions, but significantly worse than the middle-income children in the 

verbal condition. These results provided additional evidence that young children could 

reason quantitatively without using verbal representations of quantity.  

Interestingly, Jordan and colleagues reported an age by numerosity interaction. 

Performance on tasks with numbers 4 or less increased steadily from age 3 (with a mean 

of 2 of 6 items correct) through age 5 (with a mean of 5 of 6 items correct). However, on 

tasks with numerosities of 5 and above, performance remained poor with a mean of about 

2 items correct until children reached 5.6 years old, when the mean increased to 4 items 

correct. Furthermore, children performed better on small number tasks that required a 
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transformation than on a task with larger numbers that simply required children to recall 

the numerosity of the original set without a transformation. Whereas transformations on 

the small sets could be visualized using a mental-image representation, the mental-image 

representation did not even facilitate recall of large set sizes. When the size of the set 

inhibited the ability to visualize the set of objects, young children’s performance on the 

quantitative tasks suffered.  

In a similar study, Jordan, Huttenocher, and Levine (1992) assessed kindergarten 

children from middle and low-income families on a range of quantitative tasks. In 

addition to the nonverbal task, story problems, and number-fact problems used by Levine 

et al. (1992), a fourth condition consisted of word problems, such as “How much is one 

and two pennies?” This condition was designed to have similar referents as the story 

problems but with more decontextualized language. 

Results confirmed a main effect of problem type. Follow-up analyses found that 

the nonverbal problems were significantly easier than all three verbal problem types. For 

addition items, there was no significant difference between the three verbal tasks. For 

subtraction items, story problems were significantly easier than number-fact items. A 

significant interaction of income level and problem type was also reported. Follow-up 

tests found a significant effect of income level on story problems, word problems, and 

number-fact problems, but not on the nonverbal problems. Therefore, the lower-income 

students performed worse than the middle-income students in all of the verbal conditions, 

but performed as well as the middle-income students in the nonverbal condition that 

afforded a mental-image representation. To determine whether the differences between 

income levels on the verbal items could be attributed to linguistic factors, an analysis of 



33 

covariance (ANCOVA) was conducted using the verbal subtest of the Primary Test of 

Cognitive Skills as a covariate. The difference in performance between lower and middle 

class students was not significant for either story problems or word problems after verbal 

skills were statistically controlled. For number-facts, the difference between income 

levels was reduced but still significant. 

To summarize, the mental model paradigm of quantitative reasoning reported that 

preschool children perform best on nonverbal measures of quantitative reasoning. 

Specifically, Huttenlocher et al. (1994) provided evidence that by 30 months of age, 

children had the ability to perform quantitative transformations on sets of concrete 

objects. However, children did not become equally proficient in solving story problems 

and number-fact problems with comparable mathematical demands until age five (Levine 

et al., 1992). Skill in solving nonverbal quantitative tasks therefore developed before skill 

in solving similar verbal quantitative tasks. Young children also performed better on 

story problems than on number-fact problems. This additionally supported the hypothesis 

that young children reason more effectively with conceptual referents that provide 

meaning to the quantities (Jordan et al., 1992). In other words, the number-fact problems 

were more difficult because the exclusive use of number words did not afford mentally 

visualizing a discrete set of objects that would be necessary for using an image-based 

mental model. On the other hand, the referents in the story problems (e.g. “two balls”) 

afforded envisioning the objects that enabled children to use a mental-image 

representation when solving the quantitative task. 

Furthermore, although lower-income children performed just as well as middle-

income children on nonverbal measures of quantitative reasoning, they performed 
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significantly worse on verbal measures of quantitative reasoning or nonverbal tasks that 

required a verbal response. Since middle-income children tend to have stronger verbal 

skills and since the differences in performance on quantitative tasks were reduced or 

disappeared when verbal factors were taken into account, Huttenlocher and colleages 

concluded that verbal processes were most likely secondary to quantitative reasoning for 

young children (Huttenlocher et al., 1994). Likewise, other researchers have found that 

young children could solve quantitative tasks even when they had not developed the 

ability to count (Mix, 1999; Starkey, 1992). 

To interpret these findings, Huttenlocher et al. (1994) and Mix et al. (2002) 

proposed a mental model theory of quantitative reasoning. According to this theory, 

young children reason quantitatively by constructing a mental representation of each 

discrete unit in a set. Quantitative transformations are then carried out by envisioning 

objects being added to or taken away from that set (Huttenlocher et al., 1994). As 

children develop their quantitative reasoning abilities, verbal counting skills merge with 

this mental model of quantitative reasoning (Mix et al., 2002). 

Comparison of Conceptual Structures and Mental Models 

In order to explain how children of various ages solved different types of 

problems within a domain, Case proposed a developmental theory of reasoning 

suggesting that children’s reasoning qualitatively changes based on transformations to a 

central conceptual structure. According to his theory, the developed conceptual structure 

affects how a child will represent a problem that then influences the strategy that the 

child will choose to find a solution. The conceptual structure for quantitative reasoning 

develops from separate verbal counting and nonnumerical structures around age four to a 
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mental counting line at age six to a completely integrated understanding of multiple 

counting lines by age ten. To summarize, Case proposed that a central conceptual 

structure influences how a problem is represented which then guides performance on 

virtually all tasks within a domain. On the other hand, Huttenlocher and colleagues’ 

mental model theory described the patterns of preschoolers’ performance on quantitative 

tasks. The theory hypothesized that preschoolers reason on quantitative tasks by 

constructing a mental representation of the quantity in a set.  

Huttenlocher and colleagues’ mental model theory complement Case’s theory for 

understanding children’s quantitative reasoning. Whereas Case applied a macroscopic 

lens to explain the development of reasoning across ages, Huttenlocher and colleagues 

applied a microscopic lens to explain quantitative reasoning in preschool children. Hence, 

Huttenlocher and colleagues’ mental model theory provided a more detailed account of 

the nonnumerical central conceptual structure present in the predimensional level of four 

year olds. Case’s theory has a wider application by explaining how the quantitative 

conceptual structure develops to an advanced structure that can solve complex 

quantitative tasks. Although Case and his colleagues have empirically established that the 

unidimensional conceptual structure of six year olds differs from the bidimensional 

conceptual structure of eight year olds and that this conceptual structure broadly affects a 

range of quantitative tasks, a more detailed account of the unidimensional conceptual 

structure was warranted.  

 Research Questions 

Additional research needed to be conducted to examine the conceptual structure 

that students from kindergarten through second grade use to represent quantitative 
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reasoning tasks. Specifically, previous research has established that preschool children 

have two separate conceptual structures for interpreting quantity: a verbal counting 

structure and a mental-image structure. Case proposed that these two structures begin to 

merge in the early elementary grades. However, very little research specifically examined 

this process. Since most measures of quantitative reasoning for early elementary students 

assume that these two structures have merged and students use primarily a verbal 

structure of quantity, this research question is of great import.  

The overall research question addressed in this study was, “What is the 

conceptual structure that kindergarten, first, and second grade students use on 

quantitative reasoning tasks?” I hypothesized that kindergarteners would tend to have 

distinct verbal and mental-image structures of quantity. Therefore, on most quantitative 

reasoning tasks they would tend to use their mental-image structure of quantity because it 

would enable them to make a direct evaluation of the quantities. First graders were 

hypothesized to have a more integrated structure of quantity where they would tend to 

associate verbal labels of quantity with a mental-image representation. However, this 

association still would be underdeveloped. Second graders were hypothesized to have 

successfully merged the two structures of quantity. Since the verbal representation of 

quantity is considerably more prevalent in educational contexts, second graders would 

tend to use a verbal representation of quantity. 

This research question was addressed by five more specific research questions.  

1. Do kindergarten, first, and second grade students perform better on a 

pictorial task of quantitative reasoning or on a matched verbal task of 
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quantitative reasoning? Is there an interaction with grade on performance 

in verbal and pictorial representations? 

2. Can kindergarten, first, and second grade students move fluidly between 

pictorial and verbal representations of quantity? Is there an interaction 

with grade on whether students can move fluidly between representations 

of quantity? 

3. Do kindergarten, first, and second grade students choose to use a verbal or 

a pictorial representation of quantity when solving a quantitative 

reasoning task? Is there an interaction with grade on choice of verbal or 

pictorial representations? 

4. Do students exhibit a similar structure of quantity across conditions? 

Operationally, do students’ choices of formats match their pattern of 

performance in pictorial and verbal quantitative reasoning tasks? 

5. Does the pattern of findings differ when students are categorized by 

ability instead of grade?  

Each of these five research questions concerned one aspect of the quantitative 

reasoning structure that children develop. When the results from each research question 

are integrated, a comprehensive account of the quantitative reasoning conceptual 

structure of early elementary students can be illustrated. These five questions were 

addressed by performance on two different quantitative reasoning tasks. The first task, 

Equivalence, required students to make equivalent quantities by combining quantitative 

sets. The second task, Number Series, required students to discern a pattern in a series of 
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quantities and then provide the next quantity that continued the series. These two tasks 

were administered using verbal representations and pictorial representations of quantity. 

The first research question asked whether kindergarten, first, and second grade 

students performed better on a pictorial task of quantitative reasoning or on a matched 

verbal task of quantitative reasoning. If students had a stronger verbal structure of 

quantity like most measures of quantitative reasoning assume, then they would perform 

better in the verbal condition. However, if students had a stronger mental-image structure 

of quantity, then they would perform better in the pictorial condition. If their two 

structures had merged, then they would perform equally as well in both conditions. 

This question was answered by performance on both the Equivalence and Number 

Series tasks. Students completed both tasks using a verbal format with Arabic numerals 

(Numeral condition) and a pictorial format with a set of objects to represent the quantity 

(Pictorial condition). A purely verbal quantitative task with number words (e.g., “four”) 

requires students to remember the quantity. This would introduce memory confounds 

when compared to a pictorial representation of quantity. Therefore, this study used 

Arabic numerals to represent number words, assuming that kindergarteners could match 

the Arabic numeral with the appropriate number word. I hypothesized that 

kindergarteners would have better performance in the Pictorial condition when compared 

to the Numeral condition because they would tend to use a mental-image structure of 

quantity. First graders were hypothesized to have slightly higher performance in the 

Pictorial condition because they would have developed a more integrated structure of 

quantity. Second graders were hypothesized to have similar performance in the Numeral 



39 

and Pictorial conditions because they would have integrated their verbal and mental 

image structures.  

The second research question asked whether kindergarten, first, and second grade 

students could fluently move between pictorial and verbal representations of quantity. If 

students had merged their verbal and mental-image structures of quantity, then students 

would be as successful on a quantitative reasoning task using a combination of verbal and 

pictorial representations as they would be on a task exclusively using one representation. 

However, if students had not merged their verbal and mental-image structures of 

quantity, then performance would significantly decrease when solving a quantitative 

reasoning task with a combination of representations when compared to either 

representation alone. 

A third condition in the Number Series task addressed this research question. In 

addition to the two baseline conditions (Numeral and Pictorial), an additional condition 

integrated both verbal and pictorial representations (Mixed condition). The two middle 

quantities in the series were pictures whereas the rest of the quantities were Arabic 

numerals. For example, on the item 1, 2, 3, 4, the numbers two and three were 

represented with pictures and the numbers one and four with Arabic numerals. I 

hypothesized that scores on the Mixed condition would significantly decrease when 

compared to the Numeral and Pictorial conditions for kindergarteners, slightly decrease 

for first graders, and would not decrease for second graders. 

The third research question asked whether kindergarten, first, and second grade 

students preferred to use a verbal or a pictorial representation of quantity when solving a 

quantitative reasoning task. Presumably, students would choose to use the representation 
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of quantity that more directly corresponded to the conceptual structure that they used to 

solve the task. Therefore, if students had a stronger mental-image structure of quantity, 

then they would choose to use the pictorial representation more often than the verbal 

representation. On the other hand, if students had a stronger verbal structure of quantity, 

then they would choose to use a verbal representation in a quantitative reasoning task. If 

students had merged their two structures, then they would most likely choose a verbal 

representation because that is the most common representation in an educational setting. 

The third research question was addressed by the Equivalence task. In addition to 

the Numeral and Pictorial conditions, a third condition gave students the option of using 

either a verbal or pictorial representation to solve the task (Choice condition). I 

hypothesized that kindergarteners would choose to use the pictorial representation 

because they would be using a mental-image structure. First graders were hypothesized to 

equally choose the verbal and the pictorial representations because their structures would 

be beginning to merge. Second graders were hypothesized to prefer using a verbal 

representation because they would have successfully integrated the two structures. 

Since conceptual structures were hypothesized to be the characteristic way that 

students represent quantitative tasks, the fourth research question examined whether 

students demonstrated a similar structure of quantity across conditions. If students had a 

stronger mental-image structure of quantity, then they would perform better on all 

pictorial tasks and choose the pictorial representation. Likewise, if students had a stronger 

verbal structure of quantity, then they would perform better on all verbal tasks and 

choose the verbal representation. If students had merged their structures, then they would 
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perform similarly across conditions and choose the verbal representation since it is most 

frequently used in educational contexts. 

To address the fourth research question, students were compared based on the 

format that they chose most frequently in the Choice condition for the Equivalence task. 

Performance in the Pictorial and Numeral conditions of both the Equivalence and 

Number Series tasks was then compared across the groups. Students who preferred a 

pictorial representation of quantity were hypothesized to have separate verbal and 

mental-image structures of quantity. Consequently, these students were hypothesized to 

perform better in both Pictorial conditions. Students who preferred the verbal 

representation of quantity were hypothesized to have merged their verbal and mental-

image structures of quantity, so they were hypothesized to perform similarly in both 

conditions. 

The fifth research question compared the conceptual structures that emerged by 

grade to the conceptual structures that emerged when students were grouped by ability. I 

hypothesized that the pattern of performance in the Numeral and Pictorial conditions 

would be similar for low, medium, and high ability students as the pattern of performance 

for kindergarten, first, and second grade. To examine this research question, students 

were grouped by ability on the complementary task. For example, when examining 

performance in the Equivalence task, students were divided into ability groups by 

performance on the Number Series task.  

According to Case’s theory of central conceptual structures, students in fifth 

grade have developed a sophisticated understanding of the mental number line. Not only 

should their verbal and mental-image quantitative structures be integrated, but they 
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should also be able to relate multiple number lines to each other. Therefore, the 

quantitative structures of kindergarten, first, and second grade students were compared to 

a smaller sample of fifth grade students in order to examine how early elementary 

students’ performance on quantitative reasoning tasks related to students who had 

developed a more advanced structure of quantity.  
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CHAPTER 3 

METHODS 

 

Tasks 

 Equivalence. The Equivalence task was designed to be similar to the Number 

Operations Puzzle item format on the Inview. The materials for this task consisted of a 

foam board with two plates on opposite ends of the board and a cookie jar at the top (see 

Figure A.1). The plate in front of the experimenter had one strip of Velcro and the plate 

in front of the student had two strips of Velcro. The experimenter presented four cards, 

each with a representation of a quantity (cookies for the Pictorial condition and Arabic 

numerals for the Numeral condition). The cards were approximately 5.5 by 2.75 inches 

for the Pictorial condition and approximately 4.25 by 3.75 inches for the Numeral 

condition. Each card had a piece of Velcro on the back.  

During the experiment, the experimenter placed one of the cards on the plate in 

front of her. Then the experimenter told the student that they had to put the same amount 

of cookies on their plate by sticking two cards on their plate and sticking the leftover card 

into the cookie jar.1 

Number Series. The Number Series task was designed to be similar to the Number 

Series subtests on the CogAT, OLSAT-8, and WJ III ACH. A foam board was also the 

basis for the second task. This foam board had one long, horizontal strip of Velcro along 

the center (see Figure A.2). In this task, the experimenter attached one card, the stem, on 

the foam board with four to six quantities in a series. The stem card was approximately 

                                                 
1 Occasionally, a student would insist that they only needed to use one card to match the experimenter’s 
quantity. In this case, the experimenter allowed the student to use that one card and put two cards back into 
the cookie jar. 
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8.5 by 5.5 inches for the Pictorial and Mixed conditions and 11 by 2.5 inches for the 

Numeral condition. The student received a set of nine cards with the quantities one 

through nine, the distracters. The distracters were approximately 2 by 5.5 inches for the 

Pictorial condition and 4.25 by 3.75 inches for the Numeral and Mixed conditions.  

During the task, the experimenter told the student that they were going to play a 

game that required them to determine what came next. The experimenter instructed the 

student to attach the quantity that continued the pattern to the Velcro strip at the end of 

the series. 

Design 

 The design of this study consisted of two tasks with three conditions in each task 

(see Table 1). The Equivalence task had three conditions: Pictorial, Numeral, and Choice. 

In the Pictorial condition, the quantities were represented by pictures of cookies arranged 

in sets of five according to the pattern of dots on a domino. In the Numeral condition, 

students were given cards with Arabic numerals on them and told that those were the  

 

Table 1 

Design of the Study 

 Task  

Condition Equivalence Number Series  

Pictorial X X 

Numeral X X  

Choice X   

Mixed  X 
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numbers of cookies on that card.  In the Choice condition, students were given both a set 

of cards with Arabic numerals and a set of cards with cookies. The experimenter 

explained that the two sets of cards had the same amounts of cookies. In half of the items 

in the Choice condition, the cards with Arabic numerals were placed in a set to the left of 

the cookie jar and the cards with the cookies were placed in a set to the right of the 

cookie jar. In the other half of the conditions, the locations of the cards were reversed. 

This order was counterbalanced across students.  

 The Number Series task also had three conditions: Pictorial, Numeral, and Mixed. 

In the Pictorial condition, all quantities were represented by a string of beads. The 

experimenter told the students that they were to figure out how many beads should come 

on the next string. In the Numeral condition, both the stem and the distracters used 

Arabic numerals. In the Mixed condition, the first quantity (for a series of four) or first 

two quantities (for a series of five or six) were Arabic numerals, as well as the last 

quantity (for a series of four or five) or two (for a series of six). The middle two 

quantities in the series were strings of beads. The distracters were all Arabic numerals in 

the Mixed condition.  

The two tasks were administered in counterbalanced order with half of the 

students completing the Equivalence task first and the other half completing the Number 

Series task first. For both tasks, the Pictorial and Numeral conditions were always 

administered first with these two conditions administered in counterbalanced order. The 

order of the Pictorial and Numeral conditions was reversed for the task administered 

second. The Choice and Mixed conditions were always administered last. 
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 For each task, a set of 8 items per condition was created for a total of 24 items per 

task. (See Appendix B for item specifications.) In similar studies, the number of items per 

condition has been 5 (Hughes, 1981), 6 (Levine et al., 1992), and 7 (Jordan et al, 1992; 

Jordan et al, 1994). Eight items per condition were chosen for this study because the item 

set could be divided evenly in half. This was important for appropriately 

counterbalancing the location of cards in the Choice condition. Each set of eight items 

was designed to be equivalent. The sets of items were counterbalanced across conditions 

so each item set was approximately equally represented in each condition. Some of the 

Number Series items were selected from a pilot study for a revision of the Primary 

Battery of the CogAT. 

Participants 

Participants in this study consisted of students enrolled in Tonganoxie Elementary 

School, a medium-sized public school district west of Kansas City, Kansas. Most of the 

students enrolled in this school district were Caucasian of middle socioeconomic status 

and monolingual English speakers. Table 2 shows the demographic characteristics of the 

samples at each grade. There were 149 total students who participated in this study: 44 

kindergarteners, 52 first graders, 44 second graders, and 9 fifth graders. Some of the 

students did not complete all of the conditions on both tasks. In particular, a number of 

kindergarteners did not complete the Choice condition on the Equivalence task because 

they became restless on this longer task. Moreover, one first grader and one second 

grader were only able to complete one of the two tasks. Table 3 shows the number of 

students who completed each condition. Most of the kindergarten students attended 

school every other day. 
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Table 2 

Demographic Characteristics of the Sample 

 Number Age in Years Number 

Grade Male Female Mean Minimum Maximum ELL 

K 24 20 5.11 5.4 6.11 1 

1 27 25 6.11 6.4 7.9 0 

2 17 27 7.11 6.10 8.7 2 

5 4 5 10.10 10.4 11.4 1 

Total 72 77 7.2 5.4 11.4 4  

 

 

 

Table 3 

Number of Students who Completed Each Condition 

 Equivalence Number Series 

Grade Total P N C P N M Listwise 

K 44 44 44 38 44 44 42 37 

1 52 52 52 51 51 51 50 49 

2 44 43 43 43 44 44 44 43 

5 9 9 9 9 9 9 9 9 

Note: P = Pictorial condition; N = Numeral condition; C = Choice condition; M = Mixed 

condition.
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Procedure 

 Data were collected during the month of January. To avoid fatigue effects, the 

two tasks were individually administered on two separate days, typically within a week of 

each other. Students completed the tasks in a quiet room at Tonganoxie Elementary 

School. After the experimenter read the directions for the task (see Appendix C), students 

were given between two and five practice items to ensure that they understood the task. 

Most students only completed two practice items on the Equivalence task, while four or 

five practice items were necessary for the Number Series task. In the first practice item, 

the experimenter demonstrated the task for the student. In the second through fifth 

practice items, the experimenter guided the student through the task. The representation 

of quantity for the practice items was always identical to the representation that was used 

in the first condition of the task.  

 Students were given one point for each item that they correctly answered. Omits 

were scored as incorrect because students would omit a problem if they were not certain 

of the answer. For items in the Choice condition of the Equivalence task, the 

experimenter also recorded whether the student used numbers, pictures, or a combination 

of both.  

Analyses 

Performance across the conditions of the two tasks was analyzed using separate 

mixed design ANOVAs for each research question. In addition to significance tests, 

effect sizes were also reported. For ANOVA analyses, partial eta squared (ηp
2) statistics 

were calculated to represent the proportion of variance accounted for by the effect 

(Bakeman, 2006). Partial eta squared is calculated by dividing the sum of squares of the 



49 

effect by the sum of the sum of squares for the effect plus the sum of squares for the 

error. For ηp
2, a large effect size is greater than .35, a medium effect size is greater than 

.15, and a small effect size is greater than .02 (Cohen, 1992). When comparing means 

with t-tests, Cohen’s d is the appropriate index for calculating effect sizes. The d statistic 

was estimated by dividing the difference between the means by the pooled standard 

deviation (Cohen, 1988). Large, medium, and small effect sizes for Cohen’s d are greater 

than .80, .50, and .20 respectively (Cohen, 1992). 

For follow-up analyses, the Bonferroni correction was used to control for Type I 

error rates. According to the Bonferroni inequality, the probability that any given set of 

events occurs is less than or equal to the sum of their independent probabilities (Shaffer, 

1995). In other words, the probability of making a Type I error on any set of analyses is 

equal to the sum of the probabilities of each separate analysis. Consequently, the 

significance level was adjusted for follow-up tests using the Bonferroni correction (α/n 

where n is equal to the number of follow-up analyses).  
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CHAPTER 4 

RESULTS 

 

The purpose of this research study was to examine the conceptual structures that 

students in kindergarten through second grade use to represent quantitative reasoning 

tasks. To this end, performance on quantitative tasks using various combinations of 

pictures and Arabic numerals was compared. Whereas current measures of quantitative 

reasoning tend to assume that early elementary students use number words and Arabic 

numerals to represent and solve quantitative tasks, the hypothesis of this study was that 

early elementary students have two separate structures of quantity: an image-based 

mental structure and a verbal counting structure. Therefore, students in kindergarten, 

first, and second grade completed two quantitative reasoning tasks, Equivalence and 

Number Series, with both pictures and Arabic numerals. If early elementary students 

relied on a mental-image based conceptual structure to solve quantitative tasks, then 

performance on the Pictorial version of the quantitative reasoning tasks would exceed 

performance on the Numeral version. In addition to the identical Pictorial and Numeral 

conditions for both tasks, a different third condition was also administered (see Table 1). 

The Mixed condition of the Number Series task examined performance on items with a 

combination of pictures and Arabic numerals. The Choice condition on the Equivalence 

task enabled students to choose to use either pictures or Arabic numerals when solving 

the task.  

Tables 4 and 5 show the means and standard deviations of the number of items 

correct for each condition on the Equivalence and Number Series tasks, respectively.  
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Table 4 
 
Mean and Standard Deviation of Items Correct by Grade, Item Set, and Condition 

for Equivalence Task 

 Set A Set B Set C Mean 

Kindergarten (average n=14 per item set)a 

Pictorial 4.80 (1.74) 4.00 (1.92) 4.56 (1.71) 4.48 (1.77) 

Numeral 3.06 (2.41) 3.40 (2.32) 3.54 (2.44) 3.32 (2.34) 

Choice 4.10 (2.81) 4.81 (2.07) 5.42 (1.88) 4.82 (2.23) 

First Grade (average n=17 per item set) a 

Pictorial 6.78 (1.26) 6.29 (1.40) 6.65 (1.32) 6.58 (1.32) 

Numeral 6.41 (1.62) 6.50 (1.76) 6.35 (1.77) 6.42 (1.68) 

Choice 6.65 (1.32) 6.76 (1.44) 7.29 (1.16) 6.90 (1.32) 

Second Grade (average n=14 per item set) a 

Pictorial 7.38 (0.65) 7.47 (0.83) 7.33 (1.11) 7.40 (0.88) 

Numeral 7.53 (0.99) 7.62 (0.51) 7.67 (0.62) 7.60 (0.73) 

Choice 7.73 (0.46) 7.40 (0.99) 7.92 (0.28) 7.67 (0.68) 

Note: Standard deviations are in parentheses. Sets A, B, and C had eight items. All 
fifth graders received a score of 8 in all conditions, so their data was not included. 
 

a The number of participants differed across item sets and conditions for two 
reasons. First, some students did not complete all conditions. Second, the number of 
students who participated was not divisible by three, so the number of students 
assigned to a particular order of item sets differed from one to two students.
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Table 5 
 
Mean and Standard Deviation of Items Correct by Grade, Item Set, and Condition 

for Number Series Task 

 Set A Set B Set C Mean 

Kindergarten (average n=14 per item set) a 

Pictorial 2.00 (1.31) 1.58 (1.38) 1.82 (1.19) 1.82 (1.26) 

Numeral 2.29 (1.26) 2.40 (1.72) 2.08 (1.24) 2.27 (1.40) 

Mixed 1.36 (1.03) 1.18 (1.29) 1.29 (1.73) 1.26 (1.36) 

First Grade (average n=17 per item set) a 

Pictorial 2.53 (1.59) 2.94 (1.78) 3.76 (2.33) 3.08 (1.96) 

Numeral 3.35 (1.93) 3.59 (1.50) 4.06 (1.92) 3.67 (1.79) 

Mixed 3.00 (1.51) 3.29 (1.99) 2.76 (1.35) 3.02 (1.62) 

Second Grade (average n=15 per item set) a 

Pictorial 3.64 (1.45) 4.40 (2.16) 5.33 (2.72) 4.48 (2.25) 

Numeral 5.40 (2.16) 4.29 (1.49) 5.80 (1.66) 5.18 (1.87) 

Mixed 5.27 (2.02) 4.60 (1.88) 3.79 (1.81) 4.57 (1.96) 

Fifth Grade (n=3 per item set) 

Pictorial 5.67 (2.31) 7.00 (0.00) 7.67 (0.58) 6.78 (1.48) 

Numeral 7.67 (0.58) 6.33 (2.08) 6.33 (2.08) 6.78 (1.64) 

Mixed 4.67 (3.06) 7.67 (0.58) 6.00 (2.65) 6.11 (2.42) 

Note: Standard deviations are in parentheses. Sets A, B, and C had eight items. 
 

a The number of participants differed across item sets and conditions for two reasons. 
First, some students did not complete all conditions. Second, the number of students who 
participated was not divisible by three, so the number of students assigned to a particular 
order of item sets differed from one to two students. 
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Statistical tests confirmed that the three item sets behaved similarly across conditions. 

These tests simply confirmed the equivalence of item set difficulty. Since the items sets 

were counterbalanced across conditions, differential item set difficulty would not 

influence the results of the study. Scores by item set were combined for an overall mean 

score within each condition.  

Previous research has suggested that there may be differences in performance 

between boys and girls in the mathematical domain (Geary, 1994). However, statistical 

tests confirmed that there were no sex differences on the two tasks in this study, so the 

data for males and females were combined for all of the analyses.  

The overall research question of “What is the conceptual structure that 

kindergarten, first, and second grade students use on quantitative reasoning tasks?” was 

addressed by five more specific research questions. Each research question was addressed 

in turn. 

Comparison of Arabic Numerals and Pictures 

The main research question examined whether students performed better on 

quantitative reasoning tasks that used pictorial stimuli or numerical stimuli. To examine 

this research question, performance in the Pictorial and Numeral conditions was 

compared for both the Equivalence and Number Series tasks. A 3 x 2 x 2 mixed design 

ANOVA was conducted with number correct as the dependent variable. The between 

subjects factor in the ANOVA was grade with three levels: kindergarten, first, and second 

grade.2 The two within subject factors were Task (Equivalence and Number Series) and 

Condition (Pictorial and Numeral). Table 6 shows the results of this ANOVA. The grade  

                                                 
2 Due to the small sample size, fifth grade was not included in any of the statistical analyses. Instead, the 
general trend for fifth graders was compared to the statistical results for kindergarten, first, and second 
grade in Chapter 5. 
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Table 6 
 
Analysis of Variance for Number Correct in Pictorial and 

Numeral Conditions in both the Equivalence and Number Series 

Tasks 

 df F p ηp
2 

Between Subjects 

Grade (G) 2 76.88*** .000 .53 

Error 135 (6.00) 

Within Subject 

Task (T)  1 264.55*** .000 .66 

Condition (C) 1 2.03 .157 .02 

T x G 2 5.67** .004 .08 

C x G 2 9.01*** .000 .12 

T x C 1 29.80*** .000 .18 

T x C x G 2 3.63* .029 .05 

Error (T) 135 (3.30) 

Error (C) 135 (0.86) 

Error (T x C) 135 (1.04) 

Note. Values enclosed in parentheses represent mean square 
errors. The grade factor included kindergarten, first, and second 
grades. The two tasks were Equivalence and Number Series. The 
two conditions were Pictorial and Numeral. 
 
*p<.05. **p<.01. ***p<.001.   
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by condition by task interaction was significant (p<.05) with a small effect size (ηp
2=.05). 

Therefore, the pattern of performance in the Pictorial and Numeral conditions differed 

both by grade and by task (see Figure 2).  

Due to the significant three-way interaction, further analyses examined each task 

separately. The follow-up analysis consisted of a 3 x 2 mixed design ANOVA for each 

task with number of items correct as the dependent variable. The between subjects factor 

was grade and the within subject factor was condition. Because there were two follow-up 

ANOVAs, the significance level was set at α=.025 (α=.05/2). Significant effects from 

these ANOVAs were followed up by t-tests comparing mean differences in the two 

conditions. There were four follow-up t-tests, so the significance level for the t-tests was 

set at α=.0125 (α=.05/4). 
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Figure 2. Performance in the Pictorial and Numeral conditions by grade and task. In the 
Equivalence (EQ) task, there were significant differences between conditions in 
kindergarten. All grades performed significantly better in the Numeral condition of the 
Number Series (NS) task. 
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 Equivalence. The results of the follow-up ANOVA for the Equivalence task (see 

Table 7) demonstrated a significant condition by grade interaction (p<.001) with a 

medium effect size (ηp
2=.16). The pattern of performance between the Pictorial and 

Numeral conditions therefore varied by grade. The nonparallel slopes for the Equivalence 

task in Figure 2 illustrate this interaction. Consequently, performance in the two 

conditions was compared separately within each grade. In kindergarten, performance in 

the Pictorial condition was significantly better than the Numeral condition (t(43) = 4.61, 

p<.001; d=.60). There were no significant differences for either first grade (t(51) = 0.84,  

 

Table 7 

Follow-up Analysis of Variance for Number Correct in the 

Equivalence Task 

 df F p ηp
2 

Between Subjects 

Grade (G) 2 75.96*** .000 .53 

Error 136 (4.00) 

Within Subject 

Condition (C) 1 11.15*** .001 .08 

C x G 2 13.21*** .000 .16 

Error 136 (0.84) 

Note. Values enclosed in parentheses represent mean square 
errors. The grade factor included kindergarten, first, and second 
grades. The two conditions were Pictorial and Numeral. 
 
*p<.025. **p<.01. ***p<.001.  
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p<.41) or second grade (t(42) = 2.03, p<.05, d = .25).  Kindergarteners performed better 

when the problems were presented pictorially with a medium effect size whereas first 

second graders performed similarly in both conditions. 

 Number Series. A parallel ANOVA was conducted for the Number Series task 

(see Table 8). The interaction between grade and condition was not significant for this 

task. The main effect of condition was significant (p<.001) with a small effect size 

(ηp
2=.14). To follow-up the significant main effect, the t-test confirmed that students  

 

Table 8 
 
Follow-up Analysis of Variance for Number Correct in the 

Number Series Task 

 df F p ηp
2 

Between Subjects 

Grade (G) 2 31.86*** .000 .32 

Error 136 (5.36) 

Within Subject 

Condition (C) 1 22.28*** .000 .14 

C x G 2 0.33 .722 .01 

Error 136 (1.05) 

Note. Values enclosed in parentheses represent mean square 
errors. The grade factor included kindergarten, first, and second 
grades. The two conditions were Pictorial and Numeral. 
 
*p<.025. **p<.01. ***p<.001.   
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performed significantly better in the Numeral condition than the Pictorial condition for all 

grade levels (t(138) = 4.76, p<.001; d=.28).  

 Interestingly, kindergarteners performed better on the Equivalence task when 

using pictures, but performed better in the Number Series task when using Arabic 

numerals. First and second graders performed better in the Number Series task when 

using Arabic numerals, but performed similarly in both conditions on the Equivalence 

task.  

Mixture of Arabic Numerals and Pictures 

Results of the first research question suggested that using pictures or Arabic 

numerals to solve a quantitative reasoning task influenced performance under certain 

conditions. However, the first research question only focused on the exclusive use of 

pictures or Arabic numerals. The second research question further explored this 

distinction by comparing performance in each condition to an additional condition that 

used a combination of pictures and Arabic numerals. To test this research question, the 

Mixed condition of the Number Series task combined beads and Arabic numerals in the 

stem of the task. Therefore, the second research question was addressed by comparing 

performance on the Mixed condition with performance on the Pictorial and Numeral 

conditions of the Number Series task.  

A 3 x 3 mixed design ANOVA was conducted to answer the second research 

question with number of items correct as the dependent variable. The between subjects 

factor was grade and the within subject factor was condition (Pictorial, Numeral, and 

Mixed). The interaction between grade and condition was not significant (see Table 9).  
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Table 9 

Analysis of Variance for Number Correct in Number Series Task 

with Mixed Condition 

 df F p ηp
2 

Between Subjects 

Grade (G) 2 40.18*** .000 .38 

Error 133 (6.98) 

Within Subject 

Condition (C) 2 19.31*** .000 .13 

C x G 4 1.21 .306 .02 

Error 266 (1.12) 

Note. Values enclosed in parentheses represent mean square 
errors. The grade factor included kindergarten, first, and second 
grades. The three conditions were Pictorial, Numeral, and Mixed. 
 
*p<.05. **p<.01. ***p<.001. 

 

All grades therefore had the same pattern of performance (see Figure 3). The main effect 

of condition was significant (p<.001) with a small effect size (ηp
2=.13).  

Two follow-up t-tests compared performance in the Mixed condition to the 

Numeral and Pictorial conditions. The significance level for the follow-up t-tests was set 

at α=.025 (α=.05/2). Students performed significantly better in the Numeral condition 

than in the Mixed condition (t(135) = 6.12, p<.001; d=.35). However, students performed 

similarly in the Mixed and Pictorial conditions (t(135) = 1.41, p<.17). As with pictures,  
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Figure 3. Performance in the Pictorial, Mixed, and Numeral conditions for the Number 
Series task. Students performed significantly better in the Numeral condition than the 
Mixed condition, but performed similarly in the Mixed and Pictorial conditions. 
 
 

performance using a combination of pictures and Arabic numerals was significantly 

lower than performance with Arabic numerals only.  

Choice of Format 

Instead of number correct, the dependent variable for the third research question 

was the format that students chose to use when attempting the task. Recall that students 

were able to choose whether they wanted to use pictures or numerals to solve each item 

in the third condition of the Equivalence task, Choice. In addition to using only pictures 

or only numerals, many students chose to use a combination of pictures and numerals, 

representing one quantity with pictures and the other with numerals. This type of 



61 

response was coded as using both pictures and numerals.3 Table 10 shows the frequency 

that each format was chosen. 

A 3 x 3 mixed design ANOVA was conducted with the frequency that each 

format was chosen as the dependent variable (see Table 11). The between subjects factor 

was grade and the within subject factor was format chosen (pictures, numerals, or both).  

 

Table 10 

Frequency of Format Chosen for Each Item in Choice Condition of the Equivalence Task 

Item Kindergarten First Grade Second Grade 

No. P N B P N B P N B 

1 20 9 7 26 14 11 19 12 12 

2 21 10 5 25 19 7 12 15 16 

3 24 8 4 26 16 9 17 13 13 

4 22 7 5 27 18 6 15 16 11 

5 21 10 3 31 13 6 16 18 9 

6 23 6 5 26 21 4 17 16 10 

7 14 7 3 25 17 3 16 18 9 

8 15 5 4 20 21 2 14 19 9 

Total 160 62 36 206 139 48 126 127 89 

Meana 4.44 1.72 1.00 4.04 2.73 0.94 2.93 2.95 2.07 

Note. P = Pictures. N = Numerals. B = Both pictures and numerals. 

a Mean frequency across subjects.

                                                 
3 A few students chose to answer an item using a complete set of both cookies and numbers. This was 
recorded as either cookies-numbers or numbers-cookies depending on which format they responded with 
first. For data analysis, these students were categorized as choosing the first format that was used. 
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Table 11 

Analysis of Variance for Frequency of Format Chosen in the 

Choice Condition of the Equivalence Task 

 df F p ηp
2 

Between Subjects 

Grade (G) 2 9.08*** .000 .13 

Error 127 (0.23) 

Within Subject 

Format (Fo) 2 21.25*** .000 .14 

Fo x G 4 3.13* .015 .05 

Error 254 (9.15) 

Note. Values enclosed in parentheses represent mean square 
errors. The grade factor included kindergarten, first, and second 
grades. Format compared choice of pictures, numerals, or both a 
picture and a numeral. 
 
*p<.05. **p<.01. ***p<.001.   

 

The interaction between grade and format was significant (p<.05; ηp
2=.05), illustrated in 

Figure 4 by nonparallel slopes. Due to the significant interaction between grade and 

format, follow-up analyses examined each grade separately.  

To determine whether there were significant differences in format chosen within 

each grade, within subject one-way ANOVAs were conducted within each grade. The 

within subject variable was format (pictures, numerals, and both) and the dependent 

variable was the frequency with which each format was chosen. Since there were three 

follow-up ANOVAs, the significance level was set at α=.017 (α=.05/3). Table 12 shows  
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Figure 4. Frequency of the format that students chose to use in the Choice condition of 
the Equivalence task. The both format represents students who responded using one 
picture and one numeral. In kindergarten, pictures were chosen significantly more than 
numerals and both. In first grade, both pictures and numerals were chosen significantly 
more than both. There were no significant differences for second grade. 
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Table 12 

Follow-up Analysis of Variance for Frequency of Format Chosen 

in the Choice Condition of the Equivalence Task within Grade 

 df F p ηp
2 

Kindergarten 

Format 2 13.24*** .000 .28 

Error 70 (8.97) 

First Grade 

Format 2 13.63*** .000 .21 

Error 100 (9.05) 

Second Grade 

Format 2 1.16 .319 .03 

Error 84 (9.42) 

Note. Values enclosed in parentheses represent mean square 
errors. Format compared choice of pictures, numerals, or both a 
picture and a numeral. 
 
*p<.017. **p<.01. ***p<.001.   
 
 

the follow-up results. A significant format effect was found for kindergarten and first 

grade (p<.001 for both grades) but not for second grade (p<.32).  

Since there were significant differences in format chosen in kindergarten and first 

grade, post-hoc t-tests were conducted to compare the three formats. Six t-tests were 

conducted (three in kindergarten and three in first grade), and so the significance level 

was set at α=.008 (α=.05/6). Pictures were chosen significantly more than numerals for 
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kindergarteners (t(35) = 3.31, p<.008; d=1.00) but not for first graders (t(50) = 1.88, 

p<.07). Numerals were chosen more frequently than both for first grade (t(50) = 3.47, 

p<.001; d=.77) but not for kindergarten (t(35) = 1.42, p<.17). Pictures were chosen 

significantly more frequently than both for kindergarten (t(35) = 4.61, p<.001; d=1.34) 

and first graders (t(50) = 5.55, p<.001; d=1.30).  

To summarize, second graders chose each of the formats with comparable 

frequency. Kindergarteners chose pictures significantly more than numerals and both 

with large effect sizes, but there were no significant differences between numerals and 

both. There were no significant differences between pictures and numerals for first 

graders, but pictures and numerals were chosen significantly more than both, also with 

large effect sizes. 

In addition to comparing the frequency that each format was chosen, an additional 

analysis compared performance in the condition where students could choose the format 

to the condition in which students were forced to use a specific format. To this end, 

performance in the Choice condition was compared to performance in the Pictorial and 

Numeral conditions (see Figure 5). A 3 by 3 mixed design ANOVA was conducted with 

items correct as the dependent variable. The between subjects variable was grade and the 

within subject variable was condition (Pictorial, Numeral, and Choice). The results are 

presented in Table 13. The grade by condition interaction was significant (p<.001). 

Therefore, follow-up analyses examined the pattern of performance separately for each 

grade. 

As in the previous analysis, a one-way ANOVA for each grade was conducted to 

determine whether there were significant effects of condition at each grade level. Number  
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Figure 5. Performance in the Pictorial, Choice, and Numeral conditions for the 
Equivalence task. Both kindergarteners and first graders performed significantly better in 
the Choice condition than the Numeral condition.  
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Table 13 

Analysis of Variance for Number Correct in the Equivalence Task 

including Choice Condition 

 df F p ηp
2 

Between Subjects 

Grade (G) 2 64.29*** .000 .50 

Error 129 (5.48) 

Within Subject 

Condition (C) 2 21.29*** .000 .14 

C x G 4 10.36*** .000 .14 

Error 258 (0.73) 

Note. Values enclosed in parentheses represent mean square 
errors. The grade factor included kindergarten, first, and second 
grades. The three conditions were Pictorial, Numeral, and Choice. 
 
*p<.05. **p<.01. ***p<.001.   
 
 

correct was the dependent variable and condition (Choice, Pictorial, and Numeral) was 

the independent variable. Since there were three follow-up ANOVAs, the significance 

level was set at α=.017 (α=.05/3). As shown in Table 14, all of the ANOVAs were 

significant (p<.001 for kindergarten; p<.017 for first and second grade), although the 

effect was larger at kindergarten (ηp
2 = .33) than at first and second grade (ηp

2 = .08 and 

ηp
2 = .09, respectively). 

To compare performance in the Choice condition to the Numeral and Pictorial 

conditions, simple effects were examined with t-tests. There were six t-tests in all, so the  
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Table 14 

Follow-up One-Way Analysis of Variance for Number Correct in 

the Equivalence Task including Choice Condition within Grade 

 df F p ηp
2 

Kindergarten 

Condition 2 18.30*** .000 .33 

Error 74 (1.35) 

First Grade 

Condition 2 4.55* .013 .08 

Error 100 (0.70) 

Second Grade 

Condition 2 4.35* .016 .09 

Error 84 (0.21) 

Note. Values enclosed in parentheses represent mean square 
errors. The three conditions were Pictorial, Numeral, and Choice. 
 
*p<.017. **p<.01. ***p<.001.   

 

significance level was set at α=.008 (α=.05/6). Students in kindergarten and first grade 

performed significantly better in the Choice condition than in the Numeral condition 

(t(37) = 4.73, p<.001; d=.66 for kindergarteners; t(50) = 3.55, p<.001; d=.32 for first 

graders). However, there were no significant differences between the Choice condition 

and the Pictorial condition for kindergarteners and first graders (t(37) = 1.16, p<.26 for 

kindergarteners; t(50) = 1.97, p<.06 for first graders). Second graders, on the other hand, 

demonstrated the opposite pattern. Students performed better in the Choice condition than 
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the Pictorial condition although the results did not reach the adjusted significance level 

(t(42) = 2.61, p<.014; d=.34). There was no difference between the Choice and the 

Numeral condition for second graders (t(42) = 0.83, p<.42). In other words, both 

kindergarteners and first graders performed better in the condition in which they were 

allowed to choose the problem format than they did when they were required to use 

Arabic numerals. Conversely, second graders performed better when they were allowed 

to choose the format than when they were required to use pictures. 

Consistency of Structure 

The fourth research question investigated whether students demonstrated a similar 

structure of quantity across conditions. To test this question, students were categorized 

according to the format that they chose to use on the majority of the items (five or more) 

in the Choice condition of the Equivalence task. Some students did not choose the same 

format in a majority of the items, so they were classified as combined. Accordingly, 

students were classified into one of four categories: cookies, Arabic numerals, both, and 

combined. (Recall that the both category represented students who chose one cookie and 

one Arabic numeral to solve an item.) Table 15 gives the percent of students who were 

classified in each category within each grade.  

 In order to compare performance of students according to the format that they 

preferred, a 4 x 2 x 2 mixed design ANOVA was conducted with number correct as the 

dependent variable. The two within-subject factors were task (Equivalence and Number 

Series) and condition (Pictorial and Numeral). The between subjects factor was format 

chosen (pictures, numerals, both, or combined). As shown in Table 16, the three-way 

interaction between format, task, and condition was not significant (see also Figure 6).  
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Table 15 
 
Percent of Students Categorized in each Format 

 Pictures Numerals Botha Combinedb  

K 52 15 9 24 

1 41 18 10 31 

2 28 19 19 35 

Total 39 17 13 31 

Note. Totals may not sum up to 100 due to 
rounding. Students were categorized according to 
their choice on five or more items in the Choice 
condition of the Equivalence task.  
 

a The both category consists of students who used 
one picture and one numeral on a majority of the 
items.  
 

b The Combined category consists of students who 
did not choose one format on five or more items.  
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Table 16 

Analysis of Variance for Number Correct in Pictorial and 

Numeral Conditions in both the Equivalence and Number Series 

Tasks According to Format Chosen 

 df F p ηp
2 

Between Subjects 

Format (Fo) 3 2.78* .044 .06 

Error 122 (11.04) 

Within Subject 

Task (T) 1 215.10*** .000 .64 

Condition (C) 1 7.60** .007 .06 

T x Fo 3 1.66 .179 .04 

C x Fo 3 3.95** .010 .09 

T x C 1 15.81*** .000 .12 

T x C x Fo 3 0.98 .404 .02 

Error (T) 122 (3.30) 

Error (C) 122 (0.91) 

Error (T x C) 122 (1.09) 

Note. Values enclosed in parentheses represent mean square errors. 
Format compared choice of pictures, numerals, both, or combined. 
The two tasks were Equivalence and Number Series. The two 
conditions were Pictorial and Numeral. 
 
*p<.05. **p<.01. ***p<.001.   
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Figure 6. Performance in the Equivalence (EQ) and Number Series (NS) tasks based on 
the format that students chose to use in the Choice condition of the Equivalence task. 
Students were categorized as both if they used one picture and one numeral in a majority 
of the items. Students were categorized as combined if they did not use one format on a 
majority of the items. There was a significant format by condition interaction, as well as a 
significant task by condition interaction. 
 
 

However, the format by condition interaction was significant (p<.01; ηp
2=.09), as was the 

task by condition interaction (p<.001; ηp
2=.12). Since the focus of this research question 

examined performance by the format chosen, the interaction between format and 

condition was further investigated. 

To follow up the significant interaction between format and condition, total 

Pictorial and Numeral scores were calculated by summing up items correct across tasks 

(see Figure 7). Then four t-tests were conducted within each format comparing total 

Pictorial scores to total Numeral scores with the significance level set at α=.0125  
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Figure 7. Performance by condition (Pictorial and Numeral) across tasks (Equivalence 
(EQ) and Number Series (NS)) and by the format that students chose to use in the Choice 
condition of the Equivalence task. Students were categorized as both if they used one 
picture and one numeral in a majority of the items. Students were categorized as 
combined if they did not use one format in a majority of the items. For students who 
chose numerals, the Numeral condition was significantly easier than the Pictorial 
condition. There were no significant differences for the other groups of students. 
 
 

(α=.05/4). Students who chose numerals performed significantly better in the Numeral 

condition than in the Pictorial condition (t(21) = 3.21, p<.01; d=.36). There were no 

significant differences in performance for students who chose both (t(14) = 2.43, p<.03), 

cookies (t(49) = .27, p<.79) or a combination of formats (t(38) = 1.10, p<.28).  

Although there were no significant differences between conditions for the 

students who chose pictures or a combination of formats, Figure 8 plotted performance 

for only the picture and combined groups. This figure suggested that there might be an 

interaction between task and condition for these two groups. Indeed, a significant task by  
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Figure 8. Performance in both the Equivalence (EQ) and Number Series (NS) tasks for 
students who chose to use Pictures and Combined in the Choice condition of the 
Equivalence task. Students were categorized as combined if they did not use one format 
on a majority of the items. Students who chose pictures performed significantly better in 
the Pictorial condition on the Equivalence task and in the Numeral condition on the 
Number Series task. Students who chose a combination of formats performed 
significantly better in the Pictorial condition on the Equivalence task, but there was no 
significant difference on the Number Series task. 
 
 

condition interaction was found (see Table 16). The previous analysis that combined 

performance across tasks would have masked this interaction. Therefore, four t-tests were 

conducted to compare conditions within each task for the students who chose pictures 

and the students who chose a combination of formats. The significance level was set at 

α=.0125 (α=.05/4). On the Equivalence task, students who chose pictures performed 

significantly better in Pictorial condition than in the Numeral condition (t(49) = 2.78, 

p<.01; d=.27). On the other hand, these students performed significantly better in the 

Numeral condition on the Number Series task (t(49) = 3.04, p<.01; d=.33). Students who 
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chose a combination of formats also performed significantly better in the Pictorial 

condition of the Equivalence task (t(38) = 2.81, p<.01; d=.32), but there was no 

significant difference between conditions on the Number Series task (t(38) = 1.30, 

p<.21). 

To summarize, students who chose numerals performed significantly better in 

both of the Numeral conditions. Students who chose pictures performed better in the 

Pictorial condition of the Equivalence task and the Numeral condition of the Number 

Series task. Like those who chose pictures, students who chose a combination of formats 

performed better in the Pictorial condition of the Equivalence task, but they had 

comparable performed in both the Pictorial and Numeral conditions on the Number 

Series task. There were no differences in performance for students who chose both. 

In addition to the significant interactions, the overall ANOVA (see Table 16) also 

indicated a main effect of format on performance. A one-way between subjects ANOVA 

was conducted with the format chosen as the independent variable and total items correct 

across all four conditions as the dependent variable (see Figure 9). Tukey HSD contrasts 

revealed that students who chose both performed significantly better than students who 

chose pictures (p<.05). There were no other significant differences between groups. 

Performance by Ability Level 

 In addition to choice of format, performance in the Pictorial and Numeral 

conditions was also examined based on ability rather than on grade. To do this, students 

were categorized by their performance on the complementary task. In other words, 

performance in the Pictorial and Numeral conditions of the Equivalence task was 

examined as a function of performance on the Number Series task. A similar analysis was  
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Figure 9. Total items correct in the Pictorial and Numeral conditions of the Equivalence 
(EQ) and Number Series (NS) task by the format that students chose to use in the Choice 
condition of the Equivalence task. Students were categorized as both if they used one 
picture and one numeral in a majority of the items. Students were categorized as 
combined if they did not use one format on a majority of the items. Students who chose 
both performed significantly better overall than students who chose pictures. There were 
no other significant differences. 
 
 
 
also conducted for performance on the Number Series task based on scores from the 

Equivalence task. A 3 x 2 mixed design ANOVA was then conducted for each task with 

items correct as the dependent variable. The between subjects factor was ability level 

(high, medium, low), and the within subject factor was condition (Pictorial and Numeral). 

Since two ANOVAs were conducted, one for each task, the significance level was set at 

α=.025 (α=.05/2). 
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Table 17 

Frequency of Students by Grade 

Categorized in each Ability Level 

based on Performance in the Number 

Series Task 

 Lowa Mediumb Highc     

K 36 7 1 

1 20 16 15 

2 9 9 26 

Total 65 32 42 

a Low ability students answered three 
or less items correct.  
 

b Medium ability students answered 
four items correct.  
 

c High ability students answered five 
or more items correct. 
 
 

 Equivalence. Students were categorized into high ability, medium ability, and low 

ability groups based on their performance on the Numeral condition of the Number Series 

task. The average number of items correct in the Numeral condition was four. Therefore, 

students who answered 5 or more items correct were classified as high ability students, 

medium ability students answered 4 items correctly, and low ability students answered 3 

or less items correctly. Table 17 shows the frequency of students in each grade by ability 

level. Performance was then compared in the Pictorial and Numeral conditions for the 

Equivalence task for each ability level (see Figure 10). 
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Figure 10. Performance in the Pictorial and Numeral conditions of the Equivalence task 
by ability (low, medium, or high) on the Numeral condition of the Number Series task. 
There was a significant difference between the Pictorial and Numeral conditions for the 
low ability students, but not for the medium or high ability students. 
 
 

 There was a significant interaction between ability and condition (see Table 18; 

p<.01; ηp
2=.07). Follow-up analyses consisted of t-tests within each ability level 

comparing performance in the Pictorial and Numeral conditions. Since there were three t-

tests, the significance level was set at α=.017 (α=.05/3). Low ability students performed 

significantly better in the Pictorial condition than the Numeral condition (t(63) = 3.79, 

p<.001; d=.33). There were no significant differences for medium and high ability 

students (t(31) = 0.63, p<.54 for medium ability; t(41) = 0.68, p<.50 for high ability). The 

same results were found when the sample was divided based on performance in the 

Pictorial condition of the Number Series task. To summarize, low ability students  
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Table 18  

Analysis of Variance for Number Correct in the Equivalence Task 

by Ability based on the Numeral Condition of the Number Series 

Task 

 df F p ηp
2 

Between Subjects 

Ability (A) 2 29.95*** .000 .31 

Error 135 (5.89) 

Within Subject 

Condition (C) 1 4.99* .027 .04 

C x A 2 5.30** .006 .07 

Error 135 (0.93) 

Note. Values enclosed in parentheses represent mean square 
errors. Students were categorized according to low, medium, and 
high ability on the Number Series task. The two conditions were 
Pictorial and Numeral. 
 
*p<.025. **p<.01. ***p<.001. 
 
 

performed better with pictures on the Equivalence task than with Arabic numerals. 

However, there were no significant differences for medium and high ability students. 

 Number Series. Similar to the previous analysis, students were grouped according 

to their ability on the Numeral condition of the Equivalence task. The average 

performance in this condition was 6, so students who answered 5 or less items correct 

were categorized as low ability students, medium ability students answered 6 items 

correctly, and high ability students answered 7 or more items correctly. The frequency of  
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Table 19 

Frequency of Students by Grade 

Categorized in each Ability Level 

based on Performance in the 

Equivalence Task 

 Lowa Mediumb Highc     

K 34 4 6 

1 13 11 28 

2 1 3 39 

Total 48 18 73 

a Low ability students answered five or 
less items correct.  
 

b Medium ability students answered 
six items correct.  
 

c High ability students answered seven 
or more items correct. 
 
 

students in grade by ability level is presented in Table 19. Performance was then 

compared for each ability level in the Pictorial and Numeral conditions for the Number 

Series task (see Figure 11). As shown in Table 20, there was no significant interaction 

between ability level and performance (p<.38). Similarly, no significant interaction was 

found when ability level was defined by performance in the Pictorial condition of the 

Equivalence task. The significant main effect of condition duplicated the significant main 

effect found when comparing performance by grade. Consequently, no follow-up tests 

were conducted. 



81 

0

1

2

3

4

5

6

7

8

Pictorial Numeral

Number Series Condition

M
ea

n 
Ite

m
s C

or
re

ct

High
Medium
Low

 

Figure 11. Performance in the Pictorial and Numeral conditions of the Number Series 
task by ability level (low, medium, or high) on the Numeral condition of the Equivalence 
task. Students performed significantly better in the Numeral condition than in the 
Pictorial condition. 
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Table 20  

Analysis of Variance for Number Correct in the Number Series 

Task by Ability based on the Numeral Condition of the 

Equivalence Task 

 df F p ηp
2 

Between Subjects 

Ability (A) 2 34.28*** .000 .34 

Error 135 (1.05) 

Within Subject 

Condition (C) 1 20.39*** .000 .13 

C x A 2 0.99 .374 .01 

Error 135 (1.05) 

Note. Values enclosed in parentheses represent mean square 
errors. Students were categorized according to low, medium, and 
high ability on the Equivalence task. The two conditions were 
Pictorial and Numeral. 
 
*p<.025. **p<.01. ***p<.001. 
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CHAPTER 5 

DISCUSSION 

  

The two most popular theories of quantitative reasoning in young children are 

currently Case’s developmental theory of reasoning based on central conceptual 

structures and Huttenlocher and colleagues’ descriptive theory of mental models. Case 

proposed that children develop central conceptual structures that guide reasoning and that 

these conceptual structures mature in qualitatively distinct stages (Case & Okamoto, 

1996). In the first stage, children have separate verbal and mental-image structures for 

quantity. In the second stage, students develop a mental number line that merges the 

verbal and mental-image structures. As children’s conceptual structures mature, they are 

able to integrate multiple counting lines when solving quantitative tasks. According to 

Huttenlocher and colleagues, preschool children reason quantitatively by constructing a 

mental representation of the critical quantitative features of a situation. Quantitative 

transformations are then mentally visualized (Huttenlocher et al., 1994; Mix, 1999; Mix 

et al., 2002). 

 The purpose of this study was to investigate these two theories in kindergarten 

through second grade students. Huttenlocher and colleagues’ theory of quantitative 

reasoning in preschool children provided a detailed description of the mental-image 

structure of quantity that, according to Case, children developed in the first stage. 

However, little research has examined the conceptual structures of kindergarten through 

second grade students.  
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To assess the quantitative structures of kindergarten through second grade 

students, two quantitative reasoning tasks were administered using both pictures and 

Arabic numerals. The first research question simply asked which format resulted in the 

best performance. The second research question compared performance in conditions that 

exclusively used pictures or Arabic numerals to a condition with a mixture of both 

formats. These two research questions assumed that students would perform better in the 

condition that more closely matched the conceptual structure that they used to solve the 

task. Whereas the first two research questions examined performance, the third research 

question asked which format students preferred to use. This research question assumed 

that students would choose to use the format that matched the conceptual structure that 

they used to solve the quantitative reasoning task. In contrast to the first three research 

questions that categorized students by grade, the fourth and fifth research questions 

categorized students according to their performance on the quantitative reasoning tasks. 

The fourth research question examined patterns of performance by classifying students 

according to their format preference on the Equivalence task. The fifth research question 

examined performance when students were grouped according to quantitative reasoning 

ability. 

In addition to the early elementary students who were the focus of this study, a 

smaller sample of 9 fifth grade students also completed the quantitative reasoning tasks. 

Fifth graders were tested to compare early elementary students’ conceptual structures to 

students who had developed a more mature understanding of the mental number line. 

Since the sample of fifth graders was small, their results were not entered into the 

statistical analyses in Chapter 4. Instead, the general trends for fifth grade students were 
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compared to the statistical results for the kindergarten through second grade students in 

the following discussion. 

Comparison of Arabic Numerals and Pictures 

 If early elementary students used a verbal structure of quantity as most measures 

of quantitative reasoning assume, then they would perform better in the Numeral 

conditions on both tasks. However, if young students used the mental-image structure of 

quantity that Huttenlocher and colleagues proposed, then early elementary students 

would perform better in the Pictorial condition on both tasks. However, the analysis 

revealed an unexpected result: a significant interaction between grade, task, and condition 

indicated that students’ pattern of performance differed across the tasks.  

Performance on the Equivalence task, where students produced an equivalent 

quantitative set, supported the hypothesis that early elementary students had a mental-

image structure of quantity. Specifically, kindergarten students performed better in the 

Pictorial condition than in the Numeral condition. First and second graders, on the other 

hand, demonstrated that their verbal and mental-image structures of quantity were equally 

useful on the Equivalence task. Even though second graders performed better in the 

Numeral condition, the difference did not exceed the adjusted significance level. A 

ceiling effect might have masked differences in performance for the second grade 

sample. Unfortunately, the entire fifth grade sample scored at the ceiling on the 

Equivalence task in both conditions. Therefore, these results could not conclusively 

suggest whether students with a mature quantitative structure performed better on the 

Equivalence task using a verbal or mental-image structure. However, these results 
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provided convincing evidence that kindergarteners also possess the mental-image 

structure of quantity suggested by Huttenlocher and colleagues.  

On the Number Series task, the fifth grade sample performed as well in both 

conditions (mean=6.78 for both). Therefore, a mature structure of quantity on this task 

with small quantities produced no difference in performance between pictures and Arabic 

numerals. On the other hand, students in kindergarten through second grade performed 

better in Numeral condition than the Pictorial condition. Alone, these results would 

support the assumption that early elementary students were proficient at reasoning with 

Arabic numerals. However, by comparing performance on the Number Series task to 

performance on the Equivalence task, the results actually supported Case’s theory. More 

specifically, Case proposed that in the predimensional stage of reasoning, children had 

two independent conceptions of quantity: a verbally counting ability and another 

nonverbal quantitative ability that included determining which set of objects had more 

and less (Case & Okamoto, 1996).  

Most of the items on the Number Series task were effectively solved by applying 

the counting schema. For example, the item 3, 3, 4, 4, 5 could be solved by realizing that 

the pattern required counting up and repeating the digits. In the Pictorial condition of this 

task, instead of looking at the whole picture to determine a pattern, most students 

attempted to count the number of beads on each string. Many students then became 

frustrated by the large amount of beads that had to be counted. On the other hand, most 

students were able to quickly and accurately label the Arabic numerals. Recognizing the 

Arabic numerals enabled them to discern the pattern much more readily. 
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Alternatively, the Equivalence task assessed the ability to apply a part-whole 

schema to equivalent sets. The part-whole schema consists of understanding that sets are 

additive by combining two quantities to make a larger quantity (Resnick, 1989). Resnick 

proposed that the part-whole schema initially develops as a protoquantitative structure 

allowing young children to make quantitative judgments perceptually. On the 

Equivalence task, students had to understand that two quantities could be combined to 

match the experimenter’s quantity. The additive nature of the parts (the students’ 

cookies) and wholes (the experimenter’s cookies) was more apparent in the Pictorial 

condition because the students could actively manipulate the sets of cookies. In contrast, 

since Arabic numerals symbolize quantitative sets, the additive nature of Arabic numerals 

was not as evident. Three cookies and four cookies obviously combined to make seven 

cookies. Without understanding the quantitative sets that the Arabic numerals 3 and 4 

symbolize, 3 and 4 could not logically combine to make 7. Consequently, without 

understanding the symbolic nature of Arabic numerals, successful performance in the 

Numeral condition became a matter of chance.  

Therefore, the two quantitative tasks in this research study assessed different 

structures of quantity. Both the Equivalence task and the nonverbal task that Huttenlocher 

and colleagues administered to preschool students measured the protoquantitative part-

whole schema. The Number Series task, on the other hand, assessed the verbal counting 

structure. Kindergarteners showed evidence of two separate quantitative structures 

because they performed better in the Pictorial condition on the task that assessed the 

protoquantitative structure but performed better in the Numeral condition on the task that 

assessed the verbal counting structure. First and second graders performed better in the 
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Numeral condition on the task that assessed the counting schema, but performed 

comparably in both conditions on the task that assessed their protoquantitative structure. 

This supported Case’s proposition that students begin to merge their counting and 

nonverbal reasoning structures at approximately first grade. 

Mixture of Arabic Numerals and Pictures 

 In addition to examining how early elementary students performed on tasks that 

used exclusively pictures or Arabic numerals, the second research question examined 

their performance on a task with a mixture of pictures and Arabic numerals. This research 

question assumed that if students had merged their verbal and mental-image structures of 

quantity, then they would perform as well on a task with a mixture of Arabic numerals 

and pictures, the Mixed condition of the Number Series task, as on a task that used either 

exclusively. Performance in the Mixed condition was thus compared to performance in 

the Pictorial and Numeral conditions. 

 While students in all grades performed significantly worse in the Mixed condition 

than they did in the Numeral condition, there was no difference in performance between 

the Mixed and Pictorial conditions. Because the Numeral condition of the Number Series 

task evoked students’ counting schemas, the presence of any pictures appeared to thwart 

successful application of the counting schema. In the Mixed condition, two quantities 

were always represented by pictures and two to four quantities were represented by 

Arabic numerals (see Figure A2). Students also responded with an Arabic numeral. 

Therefore, the only difference between the Numeral and Mixed conditions was 

replacement of two Arabic numerals with pictures. Substituting any pictorial 

representations of quantity in a string of four to six Arabic numerals was therefore similar 
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to substituting all Arabic numerals with pictorial representations on the Number Series 

task. 

The fifth grade sample also had a slightly lower mean score in the Mixed 

condition (mean number correct = 6.11) than in both the Pictorial and Numeral conditions 

(mean number correct = 6.78 for both). Therefore, the assumption that students would 

demonstrate comparable performance in the Mixed condition if they had merged their 

verbal and mental-image structures of quantity seemed to be incorrect for the Number 

Series task. Unfortunately, a similar evaluation could not be made for the Equivalence 

task that measured the part-whole schema. Indeed, when given the option of choosing 

whether to use pictures or Arabic numerals on the Equivalence task, some students chose 

to use a combination of both. This combination would be comparable to the Mixed 

condition of the Number Series task. Therefore, the results for this research question 

would most likely be different on a measure of the part-whole schema. 

Choice of Format 

 The third research question focused on students’ choice of pictures or Arabic 

numerals, assuming that students would choose to use the format that was more closely 

related to the structure that they used to solve the quantitative task. To assess this 

research question, students were given the option of using either pictures or Arabic 

numerals in the Choice condition of the Equivalence task. Students in each grade showed 

a different pattern of choice. Kindergarteners used pictures significantly more frequently 

than all other formats. Although first graders tended to use pictures most frequently, they 

only used pictures significantly more frequently than both. Second graders used pictures, 

Arabic numerals, and both with approximately equal frequency. The observed 



90 

developmental trend for the Equivalence task was that early elementary students initially 

chose pictures, and then began to prefer using Arabic numerals as their quantitative 

reasoning structure developed. The data from fifth graders confirmed this trend. They 

chose Arabic numerals the most (33 total items), then both (23 total items), and cookies 

least frequently (16 total items).  

 These results supported the theoretical conclusion derived from students’ 

performance in the Pictorial and Numeral conditions of this task. Kindergarteners 

performed better on the Equivalence task when they used pictures and they also chose to 

use pictures more frequently. These two findings supported the claim that kindergarteners 

used mental-image representations of quantity on tasks that assessed their part-whole 

schema. Although first graders performed similarly in the Pictorial and Numeral 

conditions, they chose pictures more frequently than Arabic numerals even though the 

result did not exceed the significance level. Even though first graders seemed to be 

transitioning to a merged structure of quantitative reasoning, they still provided some 

evidence of retaining a separate mental-image representation of quantity by still 

preferring to use pictures. Second graders had approximately equivalent performance in 

the Pictorial and Numeral conditions and they also chose to use pictures and Arabic 

numerals with equal frequency. As a group, second graders demonstrated a more merged 

structure of quantity. However, note that second graders still preferred to use pictures on 

about one third of the items. 

 In addition to preference of formats, performance in the Choice condition was 

also compared to the two conditions where students were forced to use either Arabic 

numerals or pictures. Both kindergarteners and first graders performed better in the 
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Choice condition than they did in the Numeral condition. Second graders, on the other 

hand, performed better in the Choice condition than they did in the Pictorial condition 

with marginal statistical significance. Caution should be taken in interpreting the results 

of this analysis because all students did not use the same format in the Choice condition. 

Regardless, when students were allowed to choose their strategy, kindergarteners and 

first graders performed better than when they were forced to use Arabic numerals. This 

suggested that these students still had difficulty using Arabic numerals to solve part-

whole tasks. When second graders were allowed to choose their strategy, they performed 

better than when they were forced to use pictures. This suggested that students with a 

mature quantitative conceptual structure might actually perform better when using Arabic 

numerals on a part-whole task.  

 Overall, these results provided evidence that most kindergarteners and first 

graders and several second graders preferred to use pictures when solving part-whole 

quantitative reasoning tasks. Therefore, measures of quantitative reasoning should 

provide the option for early elementary to use pictures on tasks that evoke the part-whole 

schema.  

Consistency of Structure 

 The central tenet of Case’s theory was that central conceptual structures influence 

performance on a broad range of problems within a particular domain (Case, 1993). The 

fourth research question addressed this proposition by grouping students according to the 

format that they chose the most frequently in the Choice condition of the Equivalence 

task. Overall, the results supported Case’s conception of a central conceptual structure.  
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Students who chose both formats on the same item performed the best overall. 

These students demonstrated no differences in performance across conditions, although 

the small number of students in this group and a ceiling effect on the Equivalence task 

might have masked differences. In general, these students demonstrated a merged 

structure of quantity. Whereas students who had not merged their structures of quantity 

performed better in the Pictorial condition of the Equivalence task, these students 

performed similarly in the Pictorial and Numeral conditions. Therefore, students who 

chose both formats demonstrated an integrated part-whole schema and counting schema 

that enabled them to solve part-whole tasks using both pictures and Arabic numerals. In 

fact, their structures had merged so well that they chose to solve the Equivalence task 

with a combination of pictures and Arabic numerals.  

By the same logic, students who chose Arabic numerals on the Equivalence task 

had a slightly less mature quantitative structure than the students who chose both. That 

they chose to use Arabic numerals on the Equivalence task suggested that they had 

integrated their counting schema with their part-whole schema. They demonstrated better 

performance overall in the Numeral conditions, although this was most likely due to 

much better performance in the Numeral condition of the Number Series task. Their less 

mature quantitative conceptual structure therefore inhibited their performance in the 

counting task when it was presented using pictures.  

 Students who chose a combination of formats demonstrated the opposite pattern 

from students who chose Arabic numerals. Comparable to the students who chose both, 

there was no difference in performance between the conditions in the Number Series task. 

However, students who chose a combination of formats performed better in the Pictorial 
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condition of the Equivalence task. Although these students seemed to have developed the 

ability to transfer their mental-image structure to a task that afforded a counting schema, 

they were unable to transfer their counting schema to the task that afforded a part-whole 

schema.   

Finally, students who chose pictures had two distinct quantitative structures. 

These students performed better when using pictures in the Equivalence task, but they 

performed better using Arabic numerals in the Number Series task. Therefore, these 

students used the structure of quantity that the task directly afforded.  

Performance by Ability Level 

 Since grade level is a proxy for overall cognitive development or ability, the first 

three research questions categorized students according to their grade. However, the final 

research question examined the pattern of performance by ability directly by grouping 

students according to their performance on the complementary task. The low ability 

groups consisted mostly of kindergarteners, the medium ability groups consisted mostly 

of first graders, and the high ability groups consisted mostly of second graders. However, 

there were some kindergarteners who were in the high ability groups and some second 

graders who were in the low ability groups.  

 The pattern of performance based on ability was similar to the pattern of 

performance based on grade. On the Equivalence task, the low ability group, as with 

kindergarteners, performed significantly better in the Pictorial condition. Like first 

graders, the medium ability group performed equally as well in both conditions. Both the 

second graders and the high ability group also had similar performance in these two 

conditions, although this was most likely caused by a ceiling effect on this task. 
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Similarly, when grouped either by age or by ability, only a main effect of condition was 

found for the Number Series task. 

Summary 

 The overall research question that guided this study was “What is the conceptual 

structure that kindergarten, first, and second grade students use on quantitative reasoning 

tasks?” Kindergarteners were hypothesized to have distinct verbal and mental-image 

structures of quantity. This hypothesis was supported by the results. On the Equivalence 

task, which assessed a protoquantitative part-whole schema, kindergarteners performed 

better in the Pictorial condition than in the Numeral condition and when given the option, 

chose to use pictures more frequently than Arabic numerals. On the other hand, 

kindergarteners performed better in the Numeral condition on the Number Series task that 

assessed the verbal counting structure. Consequently, kindergarteners’ mental-image 

structure of quantity was applied to their performance on the Equivalence task and their 

verbal counting structure was applied to their performance on the Number Series task.  

In contrast to the kindergarteners, second graders were hypothesized to have 

merged their verbal and mental-image structures of quantity. The results provided 

tentative support for this hypothesis. Based on the results from the small fifth grade 

sample, a mature quantitative conceptual structure produced similar performance when 

the Number Series task was presented with pictures and Arabic numerals. However, 

second graders still performed better using Arabic numerals on the Number Series task. 

Furthermore, second graders performed slightly better in the Numeral condition of the 

Equivalence task. Due to a ceiling effect on this task, additional research will be 
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necessary to determine how students with a mature quantitative conceptual structure 

perform on the Equivalence task. 

Finally, first graders were hypothesized to be in the process of merging the two 

structures of quantity. As expected, first graders performed similarly to kindergarteners in 

some instances and similarly to second graders in other instances. Like both 

kindergarteners and second graders, first graders performed better in the Numeral 

condition of the Number Series task. On the Equivalence task, they performed midway 

between the pattern for kindergarteners and for second graders with equal proficiency in 

both conditions. While cookies were chosen most frequently in the Equivalence task, 

more first graders chose to use Arabic numerals than kindergarteners. 

Contrary to expectation, the Equivalence and Number Series tasks displayed 

different patterns of results. The tasks were designed with the assumption that they would 

produce similar patterns of performance across conditions. However, re-consideration of 

the demands of the tasks suggested that the two tasks actually assessed different 

structures of quantity. This unexpectedly enriched the study.  

The results that bore on the second research question were the only other outcome 

that did not confirm the hypotheses of the study. Results for the Mixed condition of the 

Number Series task presented a more complex picture of the structure of quantitative 

reasoning than originally hypothesized. These results demonstrated that substituting just 

two pictures for a series of Arabic numerals significantly lowered performance to levels 

similar to those observed when the task was presented with only pictures, even for 

students who otherwise demonstrated a merged structure of quantity. This result 

undermined the assumption that students would be able to perform equally as well on all 
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tasks using both pictures and Arabic numerals when they have merged their two 

structures of quantity. Indeed, Arabic numerals tend to offer a more powerful method of 

reasoning quantitatively (Mix et al., 2002). Using Arabic numerals reduces memory 

burdens and decreases the likelihood for errors when counting the stimuli. Although these 

results did not support the original hypothesis of this study, reconsideration of the 

assumptions of this research question revealed why. This research question was based on 

the inaccurate assumption that both the Equivalence and Number Series tasks would 

measure the same general quantitative reasoning structures. Since the Number Series task 

afforded the verbal structure of quantity, the Mixed condition unnecessarily evoked the 

mental-image structure, thereby complicating performance on this task. Consequently, 

the mental-image representation of quantity was only helpful on certain tasks, particularly 

those that afforded a part-whole schema like the Equivalence task. 

Limitations 

 One of the limitations of this research study was the constitution of the sample. 

First, students were not randomly selected from a larger population to participate in the 

study. Information about the study was sent home with all of the students at Tonganoxie 

Elementary School. The parents then had to sign and return an informed consent 

document. This might have biased the sample. However, the teachers at Tonganoxie 

Elementary School commented that students from a range of ability levels did participate 

in the study.  The sample was also relatively homogeneous with mostly Caucasian middle 

class students who lived in a relatively rural community. Therefore, the results might not 

generalize to other student populations, particularly those in an urban community or those 

with greater diversity in ethnicity and social class. 
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 Since the experimenter in the study also authored the paper, the experimenter 

might have biased students’ responses during the task. However, this conclusion was 

unlikely since the results for the Number Series task were contrary to the original 

hypothesis. Regardless, a blind administration of the experiment would have been 

desirable.   

 A ceiling effect also most likely influenced performance on the Equivalence task. 

This effect might have masked differences in performance between the Pictorial and 

Numeral conditions, particularly in the high ability and second grade samples.  

Future Directions 

 This study should be replicated using different task stimuli to determine whether 

these results generalize to the universe of pictorial objects. The Pictorial conditions in 

both tasks used round objects (beads and cookies) and were both presented individually 

using a foam board. Therefore, results may differ for different types of pictorial objects, 

such as for rectangular boxes or triangular pyramids. Furthermore, the foam board format 

did not allow students to work out the item solutions using paper and pencil as many 

quantitative tasks allow. Results, particularly for the Number Series task, may have 

differed if students had the opportunity to write Arabic numerals below the string of 

beads. 

 The data from this study compared performance on quantitative reasoning tasks 

using pictorial and verbal stimuli. To make further distinctions of the quantitative 

reasoning conceptual structures of early elementary students, additional research will be 

necessary using different research paradigms. Other methods, such as think-aloud 
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procedures, might enable researchers to understand students’ thought processes as they 

are solving quantitative reasoning tasks using pictures and numerals.  

 Previous research has also established that preschoolers have the ability to count 

in their verbal structure (Briars & Siegler, 1984; Gelman & Gallistel, 1978). This ability 

was assessed by performance on the Number Series task. Secondly, preschoolers have the 

ability to understand equivalence though part-whole relationships in their mental-image 

structure (Resnick, 1989). This ability was assessed by performance on the Equivalence 

task. Finally, preschoolers have the ability to determine more and less in multiple sets of 

objects (Barth et al., 2005; Huntley-Fenner & Cannon, 2000; Siegel, 1974). However, 

this research study did not have a measure related to the ability to determine more or less. 

Performance in Pictorial and Numeral conditions of a more/less reasoning task would be 

informative. Students might solve a more/less task using a mental-image structure in 

order to compare sets in a one-to-one fashion, so performance on this task might be 

similar to the Equivalence task. On the other hand, students might understand that further 

along the counting list represents more. This would result in similar performance as the 

Number Series task. 

The experiment was conducted in the middle of the academic year. Future studies 

should be conducted in the beginning and end of the academic year to determine how 

structures of quantitative reasoning change through instruction. Indeed, first graders in 

the beginning of the academic year would likely have a similar structure of quantitative 

reasoning as the kindergarteners in this study. Likewise, kindergarteners’ structure of 

quantitative reasoning at the end of the academic year could possibly be more similar to 

first graders. 
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 This experiment could also be conducted with samples of low socioeconomic 

status students. Previous research has established that low socioeconomic preschoolers 

and kindergarteners tend to perform as well as middle socioeconomic status students on 

nonverbal measures of quantitative reasoning, but significantly worse on verbal measures 

of quantitative reasoning (Jordan et al., 1992; Jordan et al., 1994). Therefore, low 

socioeconomic students in first and second grade might have similar structures of 

quantitative reasoning as middle socioeconomic status kindergarteners. 

Implications 

 Current measures of cognitive abilities tend to use number words and Arabic 

numerals to assess quantitative reasoning. The purpose of this study was to examine the 

fundamental assumption that early elementary students use a verbal structure of quantity 

to reason quantitatively. This assumption was supported in testing situations that evoke 

the verbal counting structure of quantity, but not in testing situations that evoke 

nonnumerical quantitative reasoning abilities such as the part-whole schema. Number 

Series was an appropriate task to use Arabic numerals with early elementary students, but 

the Equivalence task was an inappropriate use of Arabic numerals. Since the Equivalence 

task afforded the application of a part-whole schema, a mental-image structure of 

quantity was more beneficial when solving the task. Early elementary students had not 

yet merged their mental-image structure with the verbal counting structure, so these 

students were less proficient on the Equivalence task with Arabic numerals. 

 As a result, test developers should closely examine their assessments to determine 

whether their quantitative reasoning tasks afford a counting schema or nonnumerical 

quantitative reasoning abilities. Tasks that use a counting schema should exclusively use 
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Arabic numerals (for all students who can read Arabic numerals) or counting words 

because the inclusion of pictures inhibits performance. On the other hand, tasks that 

afford nonnumerical quantitative reasoning abilities should be presented in a format that 

either exclusively uses pictures or supplements Arabic numerals with pictures. Pictures 

should be used at least through second grade, and further research will have to be 

conducted to determine exactly how long pictures should be available. 

 The results of study also provided additional support for current theories of 

quantitative reasoning in children. In contrast with most other studies in the literature, 

this study applied a microscopic lens to the quantitative reasoning abilities of early 

elementary students. The results extended the work by Huttenlocher and colleagues by 

showing that kindergarteners have a similar structure of quantitative reasoning as 

preschool students. Furthermore, this study provided additional confirmation for Case’s 

theory of central conceptual structures. Specifically, by closely examining the 

quantitative reasoning structures in kindergarten, first, and second grade students, this 

study supported Case’s untested hypothesis that the verbal and mental-image quantitative 

reasoning structures begin to merge when students are about six years of age. 
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APPENDIX A 
 

FORMAT OF STUDY MATERIALS 
 
 
 
(a) 

 
 
(b) 

 
 
(c) 

 
 
Figure A1. Equivalence display. Row (a) illustrates the stem of the item. Row (b) 
illustrates the cards in the Pictorial condition. Row (c) illustrates the cards in the Numeral 
condition. 
 

1 2 3 6 
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(a) 

 
 
(b) 

 
 
(c) 

 
 
Figure A2. Number Series display. Row (a) illustrates a sample item in the Pictorial 
condition. Row (b) illustrates a sample item in the Numeral condition. Row (c) illustrates 
a sample item in the Mixed condition.  

 

2   1   2   1
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APPENDIX B 
 

ITEM SPECIFICATIONS 
 
 
 
Table B1 

Equivalence Item Specifications  

Item Item Set 

Number Set A Set B Set C 

1. 4: 1, 3, 6 4: 1, 3, 8 4: 1, 3, 9 

2. 6: 1, 5, 8 7: 1, 6, 9 5: 1, 4, 7  

3. 9: 1, 6, 8 7: 1, 4, 6 8: 1, 5, 7 

4. 5: 2, 3, 4 5: 2, 3, 6 5: 2, 3, 9 

5. 7: 2, 5, 6 9: 2, 7, 8 6: 2, 4, 5 

6. 9: 3, 6, 8 7: 3, 4, 6 8: 3, 5, 7, 

7. 3: 4, 5, -2 4: 5, 7, -3 2: 3, 6, -4  

8. 2: 8, -5, -6 3: 9, -5, -6 2: 7, -4, -5  

Note. The quantity on the experimenter’s plate is listed first. The 
quantities that the student received to solve the task are listed after the 
colon. 
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Table B2 

Number Series Item Specifications  

Item Item Set 

Number Set A Set B Set C 

1. 1 3 1 3   2 4 2 4 3 5 3 5  

2. 4 4 5 5 6  5 5 6 6 7   3 3 4 4 5  

3. 5 6 7 5 6 7   2 3 4 2 3 4   3 4 5 3 4 5 

4. 1 1 3 3 5 5  2 2 4 4 6 6   3 3 5 5 7 7  

5. 8 7 6 8 7  5 4 3 5 4   6 5 4 6 5 

6. 2 1 4 1 6 1   3 1 5 1 7 1 4 1 5 1 6 1  

7. 2 1 3 2 4    2 4 3 5 4  1 5 2 6 3  

8. 5 6 1 7 8 1   2 3 1 4 5 1   4 5 1 6 7 1  

Note. Students received quantities 1 through 9 as the distractors of the 
task. 
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APPENDIX C 
 

TASK DIRECTIONS AND PRACTICE ITEMS 
 
 
 

Number Series 
 
Have you ever made a bracelet or necklace out of beads? We are going to play a new 
game that has strings of beads like that. Numeral Condition: In this game, there will be 
some numbers that show how many beads are on a string. Pictorial Condition: In this 
game, there will be some beads on a string. To play the game, you need to figure out how 
many beads should come on the next string. Once you figure out how many beads should 
come on the next string, find the card that shows that amount and stick it on the board.  
 
I will show you how to do the first one. Numeral Condition: See, there is one, then two, 
then three. Pictorial condition: See, there is one bead, then two beads, then three beads. 
When we count, we go 1, 2, 3, and 4 comes next. So the next string of beads needs to 
have four beads. Let’s find a card that has four beads. Why don’t you try the next one? 
 
Switching from Numeral to Pictorial: Now we are going to do the same thing, but the 
cards will look a little different. Try these cards that have pictures of the beads. 
 
Switching from Pictorial to Numeral: Now we are going to do the same thing, but the 
cards will look a little different. Try these cards that show the number of beads. 
 
Introducing the Mixed condition: Now we are going to do the same thing, but the cards 
will look a little different. There will be both numbers and pictures of beads. Let me show 
you how to do the first one. There is the number one, then one, two beads, then one, two, 
three beads, then the number four. So it is one, two, three, four. What comes after four? 
Five comes after four. Here is another one to show you. There is the number two, then 
one bead, then two beads, then one. So it is two, one, two, one, and what comes next? 
Two beads come next. 
 
Practice Items:  
 1, 2, 3 
 2, 1, 2, 1 
 4, 3, 2 
 2, 2, 1, 2, 2 
 1, 2, 3, 1, 2 



106 

Equivalence 
 
Do you like to eat cookies? We are going to play a new math game with cookies. Here 
are two plates. This is my plate and this is your plate. Both plates have to have the same 
amount of cookies, but we have to put some extra cookies back into the cookie jar over 
here. Numeral condition: Here are some cards that show the number of cookies. Pictorial 
condition: Here are some cards with cookies on them.   
 
I will show you how to do the first one. Here are four cards. This card has 1 cookie, this 
card has 2 cookies, this card has 3 cookies, and this card has 6 cookies. These cookies go 
on my plate. There are one, two, three cookies on my plate. Then I am going to see if I 
can combine other cards to make 3 cookies on your plate like I have three cookies on my 
plate. If I put these together, 6 and 2 make 8. Eight is not the same as 3. I’ll try to put 
these together. Six and 1 make 7. Seven is not the same as 3. Is there any other way that 
we can make 3 cookies? Let’s combine one and two cookies. Now there are three 
cookies! So you see that I have three cookies and you have three cookies. They are the 
same. Here is another one. Why don’t you try this one?  
 
At the end of the second practice item: Pictorial condition: See how this card has four 
cookies crossed out? Numeral condition: See how this card has the number four crossed 
out? If you see a card like that, it means that you take cookies away from the other 
amount of cookies. So if we would put this card with the card that has 5 cookies, there 
would only be 1 cookie on that plate because 5 take away 4 is 1. 
 
Switching from Numeral to Pictorial: Now we are going to do the same thing, but your 
cards will look a little different. Try these cards with some cookies on them. 
 
Switching from Pictorial to Numeral: Now we are going to do the same thing, but your 
cards will look a little different. Try these cards that show the number of cookies. 
 
Introducing the Choice Condition: Now we are going to do the same thing, but you 
will get to pick which cards you want to use. The cards over here have the same amounts 
of cookies as the cards over there. 
 
Practice Items:  
 3: 1, 2, 6 
 5: 2, 3, -4 
 3: 1, 2, 8 
 3: 1, 2, 7 
 5: 2, 3, -6 
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